Answer:
Waves; wavelength; electromagnetic energy; ultraviolet light.
Explanation:
Sound are mechanical waves that are highly dependent on matter for their propagation and transmission.
Sound travels faster through solids than it does through either liquids or gases.
Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.
Hence, sound and light are both found as waves, with a variety of wavelength. The sun, a source of light waves specifically, releases a type of electromagnetic energy. It can be found as UVA or UVB types. These lights give off different levels of ultraviolet light, some of wich can be harmful.
Additionally, the ultraviolet spectrum is divided into three categories and these are; UVA, UVB and UVC.
Answer:
6.71 × 10^8 mi/hr
Explanation:
Light is usually defined as an electromagnetic wave that is comprised of a definite wavelength. It is of both types, visible and invisible. The light emitted from a source usually travels at a speed of about 3 × 10^8 meter/sec. This speed of light is commonly represented by the letter 'C'.
To write it in the metric system, it has to be converted into miles/hour.
We know that,
1 minute = 60 seconds
60 minutes = 1 hour
1 kilometer = 1000 meter
1 miles = 1.6 kilometer
Now,
= 
= 1.08 × 10^12 m/ hr (meter/hour)
= 
= 6.71 × 10^8 mi/hr (miles/hour)
Thus, the value for speed of light (C) in metric unit is 6.71 × 10^8 mi/hr.
Answer:
a. b- x= y
dx = -dy
b. F = 
c. F = 
Explanation:
a. x components:

= 
Integrating and solving gives:
b- x= y
dx = -dy
b. the force is given by the equation derived from (a.):
F = 
c. Given that r>>a, the expression becomes:
F = 
Explanation:
When the size of the charge distribution is less than the distance to the deviation point of the charge then the charge distribution would produce the same effect such as a linear charge.
Not if both speeds are in the same units.
However, if the 254 is 'centimeters per time' and the 100 is 'inches per time',
then the speeds are equal.
V₁(O2) = 6.50<span> L
</span>p₁(O2) = 155 atm
V₂(acetylene) = <span>4.50 L
</span>p₂(acetylene) =?
According to Boyle–Mariotte law (At constant temperature and unchanged amount of gas, the product of pressure and volume is constant) we can compare two gases that have ideal behavior and the law can be usefully expressed as:
V₁/p₁ = V₂/p₂
6.5/155 = 4.5/p₂
0.042 x p₂ = 4.5
p₂ = 107.3 atm