A conclusion is, in some ways, like your introduction. You restate your thesis and summarize your main points of evidence for the reader.You can usually do this in one paragraph.
Ocean waves propagate through the medium called 'sea water'.
Answer:
The steady-state theory was first proposed by Sir James Jeans in the 1920s, but it really got a boost in 1948 when it was reformulated by Fred Hoyle, Thomas Gold, and Hermann Bondi.
Explanation:
True
Refer to the diagram shown below.
Let m = the mass (g) of the door.
Let v = the launch velocity
Let u = the velocity of the door after impact.
Elastic impact (rubber ball):
The rubber ball bounces off the door with presumably elastic impact, which means that both momentum and kinetic energy are conserved.
Conservation of momentum requires that
400v = -400v + mu
Therefore

Inelastic impact (clay):
The clay sticks to the door after impact.
Conservation of momentum requires that
400g = (m+400)u
Therefore

When we compare magnitudes of u for the door, we find that

Clearly, the elastic impact creates a greater value of u for the door.
Answer:
The rubber ball creates a larger impulse to the door because the nature of its impact is approximately elastic.
Answer:
r2 = 2.401557 cm
distance = 0.10 cm
Explanation:
given data
radius = 2.50 cm
density = 15.0 nC/m
voltmeter read = 175
solution
we know here potential difference that is express as
ΔV =
...........1
so here
as here
is linear charge density
r2 = r1 ×
r2 = 2.40 ×
r2 = 2.401557 cm
and
here distance above surface will be
distance = r1 - r2
distance = 2.50 - 2.40
distance = 0.10 cm