9 is D I believe, I don't know about 10
Answer:
Bill's motor power: W_B = F x S / T = F x 0.35 / 2= 0.175F
Nageen's motor power: W_N = F x S / T = F x 0.35 / 1.8 = 0.194F
=> 0.194F > 0.175F => Nageen's motor applied more power to the box than Bill's motor.
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
Answer:
Magnitude the net torque about its axis of rotation is 2.41 Nm
Solution:
As per the question:
The radius of the wrapped rope around the drum, r = 1.33 m
Force applied to the right side of the drum, F = 4.35 N
The radius of the rope wrapped around the core, r' = 0.51 m
Force on the cylinder in the downward direction, F' = 6.62 N
Now, the magnitude of the net torque is given by:

where
= Torque due to Force, F
= Torque due to Force, F'


Now,


The net torque comes out to be negative, this shows that rotation of cylinder is in the clockwise direction from its stationary position.
Now, the magnitude of the net torque:
