Answer:
Step-by-step explanation:
an = a1 * r^(n - 1)
a1 = first term = 5
r = -2
n = nth term of the sequence
so it starts with 5
second term is :
an = a1 * r^(n - 1)......for second term
a2 = 5 * -2^(2 - 1) =
a2 = 5 * -2^1
a2 = 5 * -2
a2 = -10
an = a1 * r^(n - 1)....looking for a3
a3 = 5 * -2^(3 - 1)
a3 = 5 * -2^2
a3 = 5 * 4
a3 = 20
an = a1 * r^(n - 1)....looking for a4
a4 = 5 * -2^(4 - 1)
a4 = 5 * -2^3
a4 = 5 * -8
a4 = - 40
an = a1 * r^(n - 1)...looking for a5
a5 = 5 * -2^(5 - 1)
a5 = 5 * -2^4
a5 = 5 * 16
a5 = 80
an = a1 * r^(n-1)...looking for a6
a6 = 5 * -2^(6 - 1)
a6 = 5 * -2^5
a6 = 5 * -32
a6 = -160
bearing in mind that, on the III Quadrant, sine as well as cosine are both negative, and that hypotenuse is never negative, so, if the sine is -4/5, the negative number must be the numerator, so sin(x) = (-4)/5.
![\bf sin(x)=\cfrac{\stackrel{opposite}{-4}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{adjacent}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2-(-4)^2}=a\implies \pm\sqrt{9}=a\implies \pm 3=a \\\\\\ \stackrel{III~Quadrant}{-3=a}~\hfill cos(x)=\cfrac{\stackrel{adjacent}{-3}}{\stackrel{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B5%5E2-%28-4%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B9%7D%3Da%5Cimplies%20%5Cpm%203%3Da%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIII~Quadrant%7D%7B-3%3Da%7D~%5Chfill%20cos%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-3%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf tan\left(\cfrac{\theta}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos(\theta)}{1+cos(\theta)}} \\\\ \cfrac{sin(\theta)}{1+cos(\theta)}\qquad \leftarrow \textit{let's use this one} \\\\ \cfrac{1-cos(\theta)}{sin(\theta)} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20tan%5Cleft%28%5Ccfrac%7B%5Ctheta%7D%7B2%7D%5Cright%29%3D%20%5Cbegin%7Bcases%7D%20%5Cpm%20%5Csqrt%7B%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%5Cqquad%20%5Cleftarrow%20%5Ctextit%7Blet%27s%20use%20this%20one%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7Bsin%28%5Ctheta%29%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
345.29
Step-by-step explanation:
77 divided by .223 = 345.2914798
Answer: x=54 and y=36
Step-by-step explanation:
let the two numbers x and y
as the difference of two numbers is 18
x-y=18 eq(1)
sum of two numbers is 90
x+y=90 eq(2)
add eq(1) and eq (2)
x-y+x+y=18+90
2x=108
x=108/2
x=54
subsitute x=54 in eq 1 for y
54-y=18
-y=18-54
y=36
for check
54+36=90
90=90
54-36=18
18=18