The first molecule is a sensible molecule having complete octet of each atom such as C, H and O whereas the second molecule having hydrogen present between the aldehyde and methyl group and thus showing hydrogen is making bond with aldehyde and methyl as well which is not possible because hydrogen only having one electron in its octet due to which it can only form a single bond by sharing its valence electron.
Answer:
Knowing that boron has an atomic mass of 10,811 means that all boron isotopes on average weigh 10,811 u.
Explanation:
The atomic mass of an atom is the mass of the atom measured in u (unified atomic mass unit), although we can also express it as Da (Dalton's unit)
Atomic mass refers to the average mass that all isotopes of that element have.
When we speak of isotopes we are referring to the element itself but with a different number of neutrons, which makes it modify its mass number.
Answer: 0.0508mL
Explanation: Using the basic formula that states: C acid * V acid = C base * V base. we have:0.568 * 17.88 = 20 * C base.
therefore concentration of the base is 1.0156/20 = 0.0508 mL
Answer: Option (b) is the correct answer.
Explanation:
In a chemical reaction, the bonds between the reactant molecules tend to break leading to the formation of new bonds to produce products.
So, in order to break the bonds between the reactant molecules, energy is required to overcome the attraction between the atoms.
To form new bonds, energy gets released when two atoms come closer to each other. Hence, formation of bond releases energy.
As in the given reaction it is shown that
< 0, that is, enthalpy change is negative. Hence, energy is released as it is an exothermic process.
Thus, we can conclude that the statement energy released as the bonds in the reactants is broken is greater than the energy absorbed as the bonds in the products are formed, is true about the bond energies in this reaction.