Answer:
The inverse relation G^(-1) is not a function. Why not? Because the y value y = 3 is paired up with more than one x value (x = 5, x = 2). The inverse relation G^(-1) is the set shown below
{(3,5), (3,2), (4,6)}
All I've done is swap the (x,y) values for each ordered pair to form the inverse relation. As you can see, x = 3 leads to multiple y value outputs which is why this relation is not a function. So in short, the answer is choice C. To have the inverse relation be a function, each value in the original domain must map to exactly one value in the range only. However that doesn't happen as the domain values map to an overlapping y value (y = 3).
Answer:
5
Step-by-step explanation:
because it is asking what minus 9 is equal to -4
Answer:
A is spanned by vector.
Step-by-step explanation:
The null space of matrix is set of all solutions to matrix. The linearly independent vectors forms subset which are spanned and forms the null space. The null space of vector can be found by reducing its echelon. The non zero rows formed are the null spaces of matrix.
The answer is 9.53939201417