Option C: Sulfur Dioxide is the answer
Hope this helps
Scientists use the physical and chemical properties to help them identify and classify matter. These physical and chemical properties are in a macro-perspective, in which these matter contains compounds, elements and atoms. Hence, matter can be classified in various ways, <span><span>
1. </span>Atomic number either atomic mass each element has</span>
<span><span>2. </span>By substance of that matter either pure substance or mixed substance</span> <span>
3. If they cannot reduce a certain substance into a much smaller quantified atomic structure then they they’ll use (2) to identify and classify it.</span>
Answer:
537.68 torr.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁).</em>
P₁ = 485 torr, T₁ = 40°C + 273 = 313 K,
P₂ = ??? torr, T₂ = 74°C + 273 = 347 K.
∴ P₂ = (P₁T₂)/(P₁) = (485 torr)(347 K)/(313 K) = 537.68 torr.
Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />
Hello!
The reduction in particle size results in an increased rate of solution. It occur because is harder for a a solvent to surround bigger molecules.
Hugs!