Answer:

Explanation:
The density formula is:

Let's rearrange the formula for
. the volume. Multiply both sides by
, then divide by
.




The volume can be found by dividing the mass by the density. The mass of the object is 30.07 grams and the density is 1.48 grams per milliliter.


Divide. Note, when dividing, the grams, or
will cancel out.


The volume of the object is 20.317567567568 milliliters.
Question is incomplete, complete question is;
A 34.8 mL solution of
(aq) of an unknown concentration was titrated with 0.15 M of NaOH(aq).

If it takes 20.4 mL of NaOH(aq) to reach the equivalence point of the titration, what is the molarity of
? For your answer, only type in the numerical value with two significant figures. Do NOT include the unit.
Answer:
0.044 M is the molarity of
(aq).
Explanation:
The reaction taking place here is in between acid and base which means that it is a neutralization reaction .
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

0.044 M is the molarity of
(aq).
Answer:
you will run 720 meters
Explanation:
because 4 times 60 is 240 and 240 times 3 is 720
Answer:
molar mass M(s) = 65.326 g/mol
Explanation:
- M(s) + H2SO4(aq) → MSO4(aq) + H2(g)
∴ VH2(g) = 231 mL = 0.231 L
∴ P atm = 1.0079 bar
∴ PvH2O(25°C) = 0.03167 bar
Graham´s law:
⇒ PH2(g) = P atm - PvH2O(25°C)
⇒ PH2(g) = 1.0079 bar - 0.03167 bar = 0.97623 bar = 0.9635 atm
∴ nH2(g) = PV/RT
⇒ nH2(g) = ((0.9635 atm)(0.231 L))/((0.082 atmL/Kmol)(298 K))
⇒ nH2(g) = 9.1082 E-3 mol
⇒ n M(s) = ( 9.1082 E-3 mol H2(g) )(mol M(s)/mol H2(g))
⇒ n M(s) = 9.1082 E-3 mol
∴ molar mass M(s) [=] g/mol
⇒ molar mass M(s) = (0.595 g) / (9.1082 E-3 mol)
⇒ molar mass M(s) = 65.326 g/mol
Answer:
"where deliberately discarded solid waste is discharged, deposited, injected, dumped, spilled, leaked, or placed so that such solid waste or a constituent thereof may enter the environment or be emitted into the air or discharged into waters, including ground waters."
Explanation:
https://definitions.uslegal.com/s/solid-waste-disposal-site/