1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
14

What's a close to 40.2that divides easily by 8​

Mathematics
1 answer:
solong [7]3 years ago
5 0

Answer:

40 or 48 if it has to be greater than 40.2

Step-by-step explanation:

40- .2=40

40/8=5

~or~

40.2+7.8=48

48/8=6

You might be interested in
Of the 145 students who took a mathematics exam, 80 correctly answered the first question, 81 correctly answered the second ques
jasenka [17]

Answer: 64

Step-by-step explanation:

the Kids that answered correct in any of questions 1 and 2 got at least one right so subtract the highest number which is 81 students by all the general amount of them, 145 that’s 64.

3 0
3 years ago
The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard de
qaws [65]

Answer: a. 0.6759    b. 0.3752    c. 0.1480

Step-by-step explanation:

Given : The long-distance calls made by the employees of a company are normally distributed with a mean of 6.3 minutes and a standard deviation of 2.2 minutes

i.e. \mu = 6.3 minutes

\sigma=2.2 minutes

Let x be the long-distance call length.

a. The probability that a call lasts between 5 and 10 minutes will be :-

P(5

b. The probability that a call lasts more than 7 minutes. :

P(X>7)=P(\dfrac{X-\mu}{\sigma}>\dfrac{7-6.3}{2.2})\\\\=P(Z>0.318)\ \ \ \ [z=\dfrac{X-\mu}{\sigma}]\\\\=1-P(Z

c. The probability that a call lasts more than 4 minutes. :

P(X

8 0
3 years ago
A1,a2,a3....a30-each of these 30 sets has 5 elements.b1,b2,....bn-each of these n sets has 3 elements.union of a1,a2...a30=union
zzz [600]
 the number of elements in the union of the A sets is:5(30)−rAwhere r is the number of repeats.Likewise the number of elements in the B sets is:3n−rB
Each element in the union (in S) is repeated 10 times in A, which means if x was the real number of elements in A (not counting repeats) then 9 out of those 10 should be thrown away, or 9x.  Likewise on the B side, 8x of those elements should be thrown away. so now we have:150−9x=3n−8x⟺150−x=3n⟺50−x3=n
Now, to figure out what x is, we need to use the fact that the union of a group of sets contains every member of each set.  if every element in S is repeated 10 times, that means every element in the union of the A's is repeated 10 times.  This means that:150 /10=15is the number of elements in the the A's without repeats counted (same for the Bs as well).So now we have:50−15 /3=n⟺n=45
5 0
3 years ago
Is my answer choice wrong or right?
Tasya [4]

Answer:

It is correct

Step-by-step explanation:

Gr8 job

6 0
3 years ago
Savana has read 4 pages in her new book. Carlos has read 4 times as many pages as savana. How many pages has Carlos read? I
kiruha [24]
4 x 4 = 16

Savanas pages read times 4 gives you Carlos pages.
4 0
3 years ago
Other questions:
  • (2,4) after scale factor of 5
    7·1 answer
  • The difference of twice a number g and 10 is 24
    11·2 answers
  • Consider this scenario: A traffic signal for eastbound traffic is red for 15 seconds, yellow for 5 seconds, and green for 30 sec
    9·2 answers
  • Enter an expression that represents the fallowing statement and then solve the expression. 2 less than the product of 6 and -10.
    8·1 answer
  • Which phrase matches the expression c^3
    13·1 answer
  • Pls help me with 19,20 pls thx and show me how u did it
    14·1 answer
  • I need help. Someone please help!​
    13·1 answer
  • Polygamy and its effect​
    6·1 answer
  • My bad i forgot to put the pic
    12·1 answer
  • a team's stadium has a capacity of 86,047. The fan base is notorious for selling out of tickets every game. If every game sells
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!