1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
3 years ago
13

A uniform brick of length 21 m is placed over

Physics
1 answer:
Paha777 [63]3 years ago
6 0

Answer:

15.75 m

Explanation:

First, let's look at the top brick by itself.  In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick.  So the edge of the top brick must be 10.5 m from the edge of the bottom brick.

Now let's look at both bricks as a combined mass.  We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m.  And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge.  So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.

You might be interested in
A man of mass 85 kg runs up a flight of stairs of height 4.6 m in a time period
seraphim [82]

Explanation:

a) Power = work / time = force × distance / time

P = Fd/t

P = (85 kg × 9.8 m/s²) (4.6 m) / (12 s)

P ≈ 319 W

b) P = Fd/t

0.70 (319 W) = (m × 9.8 m/s²) (4.6 m) / (9.6 s)

m = 47.6 kg

7 0
3 years ago
Un proyectil es lanzado horizontalmente desde una altura de 12 metro con una velocidad de 80 m/sg. a.Calcular el tiempo de vuelo
Naily [24]

Answer:

t= 1,56 s ,   x= 124,8 m , v = (80 i^ - 15,288 j ) m/s

Explanation:

Este es un ejercicio de lanzamiento proyectiles, comencemos por encontrar el tiempo que tarda en llegar al piso

        y = y₀ + v_{oy} t – ½ g t²

en este caso la altura inicial es y₀= 12 m y llega a y=0 , como es lanzado horizontalmente la velocidad vertical es cero (v_{oy}=0)

       0 = y₀ – ½ g t²

       t= √ (2 y₀/g)

calculemos

       t= √ ( 2 12 / 9,8)

       t= 1,56 s

El alcance del proyectil es la distancia horizontal recorrida  

        x = v₀ₓ t

        x = 80 1,56

        x= 124,8 m

La velocidad de impacto cuando toca el suelo

        vx = v₀ₓ = 80 ms

        v_{y} = v_{oy} – gt

        v_{y} = - 9,8 1,56

        v_{y} = - 15,288 m/s

la velocidad es

       v = (80 i^ - 15,288 j ) m/s

Traducttion  

This is a projectile launching exercise, let's start by finding the time it takes to reach the ground

        y = y₀ + v_{oy} t - ½ g t²

in this case the initial height is i = 12 m and it reaches y = 0, as it is thrown horizontally the vertical speed is zero (v_{oy} = 0)

       0 =y₀I - ½ g t²

       t = √ (2y₀ / g)

let's calculate

       t = √ (2 12 / 9.8)

       t = 1.56 s

Projectile range is the horizontal distance traveled

        x = v₀ₓ t

        x = 80 1.56

        x = 124.8 m

Impact speed when it hits the ground

        vₓ = v₀ₓ = 80 ms

        v_{y} = v_{oy} - gt

        v_{y} = - 9.8 1.56

        v_{y} = - 15,288 m / s

the speed is

       v = (80 i ^ - 15,288 j) m / s

7 0
3 years ago
Newtown third law applies to blank of objects​
fomenos

Answer:

All

Explanation:

I'm not sure what you meant but Newton's third law which basically states that every action has an equal and opposite reaction applies to <em>all</em> objects. So I think the answer is all.

8 0
3 years ago
A 975-kg sports car (including driver) crosses the rounded top of a hill at determine (a) the normal force exerted by the road o
iVinArrow [24]
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill: v=15 m/s
- radius of the hill: r=100 m

Solution:

(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car W=mg (downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force, m \frac{v^2}{r}, so we can write:
mg-N=m \frac{v^2}{r} (1)
By rearranging the equation and substituting the numbers, we find N:
N=mg-m \frac{v^2}{r}=(975 kg)(9.81 m/s^2)-(975 kg) \frac{(15 m/s)^2}{100 m}=7371 N

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:
N=mg-m \frac{v^2}{r}=(62 kg)(9.81 m/s^2)-(62 kg) \frac{(15 m/s)^2}{100 m}=469 N

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:
mg=m \frac{v^2}{r}
from which we find
v= \sqrt{gr}= \sqrt{(9.81 m/s^2)(100 m)}=31.3 m/s
7 0
3 years ago
The Earth and the Moon are attracted to each other by universal gravitation. The Earth is much more massive than is the Moon. Do
OverLord2011 [107]

Answer:

Earth attract the Moon with a force that is greater.

Explanation:

According to the law of gravitation, the gravitational force between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Mathematically, F1 = Gm1m2/r²... 1

Let m1 be the mass of the earth and m2 be that of the moon

If the Earth is much more massive than is the Moon, the new force of attraction between them will become;

F2= G(2m1)m2/r²

F2 = 2Gm1m2/r² ... (2)

Dividing eqn 1 by 2 we have;

F1/F2 = (Gm1m2/r²)÷(2Gm1m2/r²)

F1/F2 = Gm1m2/r²×r²/2Gm1m2

F1/F2 = 1/2

F2=2F1

This shows that that the earth will attract the moon by a force 2times the initial force of the masses(i.e a much greater force)

6 0
3 years ago
Other questions:
  • While discussing the effects of loose wheel bearings: Technician A says that vibration may occur while driving. Technician B say
    12·1 answer
  • A cube of metal has a mass of 11 grams and a volume of 1 cm . When fully submerged in water this metal cube hanging from an accu
    13·1 answer
  • If trees have leaves, then birds nests will increase. What the independent variable and the dependent variable?
    7·1 answer
  • An electron moving with a speed of 4.0 * 105 m&gt;s in the positive x direction experiences zero magnetic force. When it moves i
    15·2 answers
  • How much work did the movers do (horizontally) pushing a 46.0-kgkg crate 10.5 mm across a rough floor without acceleration, if t
    13·1 answer
  • 2 Points
    13·2 answers
  • A passenger on a jet airplane claims to be able to walk at a speed in excess of 500 mph. Can this be true?
    5·1 answer
  • What role does the sun play in driving the water cycle in Antarctica
    6·1 answer
  • Why is it worthwhile to explore the moon again?
    12·1 answer
  • A student stands with both feet on some scales in order to measure his weight.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!