Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:

Answer:up
Explanation:The partials are lighter
Answer:
a) 
b) 
Explanation:
Given:
String vibrates transversely fourth dynamic, thus n = 4
mass of the string, m = 13.7 g = 13.7 × 10⁻¹³ kg
Tension in the string, T = 8.39 N
Length of the string, L = 1.87 m
a) we know

where,
= wavelength
on substituting the values, we get

or

b) Speed of the wave (v) in the string is given as:

also,

equating both the formula for 'v' we get,

on substituting the values, we get

or

or

when the two waves interfere with eachother to make a dark spot the periodic difference of the two waves is π . the wave length for 2π is 600nm
. ie. for π difference it is 300nm
Answer:
So waves are everywhere. But what makes a wave a wave? What characteristics, properties, or behaviors are shared by the phenomena that we typically characterize as being a wave? How can waves be described in a manner that allows us to understand their basic nature and qualities?
A wave can be described as a disturbance that travels through a medium from one location to another location. Consider a slinky wave as an example of a wave. When the slinky is stretched from end to end and is held at rest, it assumes a natural position known as the equilibrium or rest position. The coils of the slinky naturally assume this position, spaced equally far apart. To introduce a wave into the slinky, the first particle is displaced or moved from its equilibrium or rest position. The particle might be moved upwards or downwards, forwards or backwards; but once moved, it is returned to its original equilibrium or rest position. The act of moving the first coil of the slinky in a given direction and then returning it to its equilibrium position creates a disturbance in the slinky. We can then observe this disturbance moving through the slinky from one end to the other. If the first coil of the slinky is given a single back-and-forth vibration, then we call the observed motion of the disturbance through the slinky a slinky pulse. A pulse is a single disturbance moving through a medium from one location to another location. However, if the first coil of the slinky is continuously and periodically vibrated in a back-and-forth manner, we would observe a repeating disturbance moving within the slinky that endures over some prolonged period of time. The repeating and periodic disturbance that moves through a medium from one location to another is referred to as a wave.
Hope That Helps!!
Explanation: