1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
11

a skier starts at rest at the top of a hill with 350 J of gravitational potential energy. Assuming energy is conserved, what is

her final kinetic energy at the lowest point
Physics
1 answer:
spayn [35]3 years ago
3 0

Answer:

350Joules

Explanation:

According to law of Conservation of energy, the amount of energy at the used up at the start is equal to that at the end.

The initial energy used up is gravitational potential energy

Final energy at the lowest point is kinetic energy.

If the energy is conserved then it means energy is not used up during the process hence;

Initial Potential energy = Final kinetic energy

If the gravitational potential energy is 350Joules then her final kinetic energy at the lowest point will also be 350Joules

You might be interested in
Five different forces act on an object. Is it possible for the net force on the object to be zero?
bazaltina [42]
No because there must be an even # if their is an even amount one of the forces isn’t being cancelled
4 0
3 years ago
A 91.5 kg football player running east at 2.73 m/s tackles a 63.5 kg player running east at 3.09 m/s. what is their velocity aft
vivado [14]

Their velocity afterwards is 2.88 m/s east

Explanation:

We can solve this problem by using the law of conservation of momentum. In fact, for an isolated system (= no external force), the total momentum must be conserved before and after the collision. So we can write:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1 + m_2)v

where: in this case:

m_1 = 91.5 kg is the mass of the first player

u_1 = 2.73 m/s is the initial velocity of the first player (choosing east as positive direction)

m_2 = 63.5 kg is the mass of the second player

u_2 = 3.09 m/s is the initial velocity of the second player

v is their combined velocity afterwards

Solving for v, we find:

v = \frac{m_1 u_1+m_2 u_2}{m_1+m_2}=\frac{(91.5)(2.73)+(63.5)(3.09)}{91.5+63.5}=2.88 m/s

And the sign is positive, so the direction is east.

Learn more about momentum here:

brainly.com/question/7973509  

brainly.com/question/6573742  

brainly.com/question/2370982  

brainly.com/question/9484203  

#LearnwithBrainly

7 0
3 years ago
As an aid in working this problem, consult Interactive Solution 3.41. A soccer player kicks the ball toward a goal that is 20.0
alekssr [168]

Answer:

V=14.9 m/s

Explanation:

In order to solve this problem, we are going to use the formulas of parabolic motion.

The velocity X-component of the ball is given by:

Vx=V*cos(\alpha)\\Vx=15.7*cos(31^o)=13.5m/s

The motion on the X axis is a constant velocity motion so:

t=\frac{d}{Vx}\\t=\frac{20.0}{13.5}=1.48s

The whole trajectory of the ball takes 1.48 seconds

We know that:

Vy=Voy+(a)*t\\Vy=15.7*sin(31^o)+(-9.8)*(1.48)=-6.42m/s

Knowing the X and Y components of the velocity, we can calculate its magnitude by:

V=\sqrt{Vx^2+Vy^2} \\V=\sqrt{(13.5)^2+(-6.42)^2}=14.9m/s

6 0
3 years ago
Does current in Helmholtz coils flow in the same or opposite direction through each coil? Explain.
zhenek [66]
To get a uniform field in the central region between the coils, current flows in the same direction in each. 
5 0
2 years ago
A ball is dropped from rest at point O. After falling for some time, it passes by a window of height 3.3 m and it does so in 0.2
stiv31 [10]

Answer:

Speed at which the ball passes the window’s top = 10.89 m/s

Explanation:

Height of window = 3.3 m

Time took to cover window = 0.27 s

Initial velocity, u = 0m/s

We have equation of motion s = ut + 0.5at²

For the top of window (position A)

                     s_A=0\times t_A+0.5\times 9.81t_A^2\\\\s_A=4.905t_A^2

For the bottom of window (position B)

                     s_B=0\times t_B+0.5\times 9.81t_B^2\\\\s_A=4.905t_B^2

\texttt{Height of window=}s_B-s_A=3.3\\\\4.905t_B^2-4.905t_A^2=3.3\\\\t_B^2-t_A^2=0.673

We also have

                 t_B-t_A=0.27

Solving

         t_B=0.27+t_A\\\\(0.27+t_A)^2-t_A^2=0.673\\\\t_A^2+0.54t_A+0.0729-t_A^2=0.673\\\\t_A=1.11s\\\\t_B=0.27+1.11=1.38s

So after 1.11 seconds ball reaches at top of window,

       We have equation of motion v = u + at

                                     v_A=0+9.81\times 1.11=10.89m/s

Speed at which the ball passes the window’s top = 10.89 m/s                

7 0
3 years ago
Other questions:
  • What does it mean to have a good experimental design?​
    6·1 answer
  • A gasoline engine transform approximately 34 percent of the fuel's chemical energy into mechanical energy. if energy is conserve
    15·1 answer
  • An object increases its velocity from 20 m/s to 63 m/s in 10 s. What is the acceleration of the object?
    8·1 answer
  • The process by which people walk
    12·2 answers
  • Why can't you feel rhe force of attraction between you and mars
    6·1 answer
  • A star has a spectrum shift exhibiting a red shift. What can you conclude about the distance from earth to that star
    6·2 answers
  • When hydrogen chloride is added to sodium hydroxide, it will produce water and what?
    15·2 answers
  • A student is investigating the differences between light waves and sound waves. The student does this by using a capsule filled
    5·2 answers
  • Which equation contains only scalar quantities
    12·1 answer
  • Which of the following is not an element of installment credit?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!