The best represent the size of visible light will be C. Protozoa
The electromagnetic spectrum, gives the overall distribution of electromagnetic radiation by the frequency or wavelength. All EM waves travel at the speed of light in a vacuum, but over a wide range of frequencies, wavelengths, and photon energies.
Visible light wavelengths cover the range of approximately 0.4 to 0.7 μm. electromagnetic spectrum that the human eye can see is the Visible light. Visible light is a form of electromagnetic (EM) radiation, along with radio waves, infrared, ultraviolet, X-rays, and microwaves. the wavelengths that are visible to most human eyes is generally known as Visible light
the best represent the size of visible light is Protozoa, According to the diagram of the electromagnetic spectrum shown,
Learn more about electromagnetic spectrum here brainly.com/question/25847009
#SPJ9
Answer:
24445.85 J/s
Explanation:
Area, A = 300 m^2
T = 33° C = 33 + 273 = 306 k
To = 18° C = 18 + 273 = 291 k
emissivity, e = 0.9
Use the Stefan's Boltzman law

Where, e be the energy radiated per unit time, σ be the Stefan's constant, e be the emissivity, T be the temperature of the body and To be the absolute temperature of surroundings.
The value of Stefan's constant, σ = 5.67 x 10^-8 W/m^2k^4
By substituting the values

E = 24445.85 J/s
Terry will be thrown back due to Jared's larger mass. Larger mass= larger inertia
Chemicals are released by the damaged tissue to bring platelets to the area to become sticky and to plug the vessels. An inflammatory response occurs which brings immune cells to fight infection and other clotting factors come to begin forming a new tissue.
Answer:
Speed of second car will be 57.17 m/sec
Explanation:
We have given lead car travels = 44 laps
1 laps = 1.34 km = 1340 m
So total distance = 1340×44 = 58960 m
Speed of lead car = 55.9 m/sec
We know that 
As the second car is 1 lap behind so distance traveled by second car = 45×1340 = 60300 m
So speed of second car will be 