Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Answer is: 2. atomic number.
Atomic number is unique and defines an element. Atomic number (Z) is total number of protons in an atom.
For example, nitrogen atom (N-14) has 7 protons (p⁺), 7 electrons (e⁻) and 7 neutrons (n°). Protons (positive charge) and neutrons are in the nucleus of atom, electrons (negative charge) are bound to the nucleus in spherical shells. Nitrogen is an element with atomic number 7. Mass number (A) is the total number of protons and neutrons in a nucleus. Nitrogen mass number is 14 (A = p⁺ + n°; A = 14).
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

Answer:
100
Explanation:
M = mass/ number of mole
M = 3.5 g/0.035 mol = 100 g/mol - molar mass
D all are 1 because the left side equals the right