1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sauron [17]
3 years ago
10

9+7+(+^8+7+9 and 12 more

Mathematics
2 answers:
MariettaO [177]3 years ago
7 0
The answer will be 54 
Soloha48 [4]3 years ago
3 0
The answer will be 52. hope it helps
You might be interested in
Solve the inequality. Graph your solution.<br> m+7 39
kogti [31]

Answer:

40

Step-by-step explanation:

8 0
3 years ago
Hello help me with this question thanks in advance​
Ede4ka [16]

\bold{\huge{\green{\underline{ Solutions }}}}

<h3><u>Answer </u><u>1</u><u>1</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{HM = 5 cm }

  • <u>In </u><u>square </u><u>all </u><u>sides </u><u>of </u><u>squares </u><u>are </u><u>equal </u>

<u>The </u><u>perimeter </u><u>of </u><u>square </u>

\sf{ = 4 × side }

\sf{ = 4 × 5 }

\sf{ = 20 cm }

Thus, The perimeter of square is 20 cm

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>2</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{MX  = 3.5 cm }

  • <u>In </u><u>square</u><u>,</u><u> </u><u>diagonals </u><u>are </u><u>equal </u><u>and </u><u>bisect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>

<u>Here</u><u>, </u>

\sf{MX  = MT/2}

\sf{MT = 2 * 3.5 }

\sf{MT = 7 cm}

Thus, The MT is 7cm long

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>3</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>measure </u><u>of </u><u>Ang</u><u>l</u><u>e</u><u> </u><u>MAT</u>

  • <u>All </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>From </u><u>above </u>

\sf{\angle{MAT  = 90° }}

Thus, Angle MAT is 90°

Hence, Option B is correct .

<h3><u>Answer </u><u>1</u><u>4</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>know </u><u>that</u><u>, </u>

  • <u>All </u><u>the </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>equal </u><u>and </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>Therefore</u><u>, </u>

\sf{\angle{MHA  = }}{\sf{\angle{ MHT/2}}}

\sf{\angle{MHA = 90°/2}}

\sf{\angle {MHA = 45°}}

Thus, Angle MHA is 45°

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>5</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Refer the above attachment for solution

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>6</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Both a and b

  • <u>The </u><u>median </u><u>of </u><u>isosceles </u><u>trapezoid </u><u>is </u><u>parallel </u><u>to </u><u>the </u><u>base</u>
  • <u>The </u><u>diagonals </u><u>are </u><u>congruent </u>

Hence, Option C is correct

<h3><u>Answer </u><u>1</u><u>7</u><u> </u><u>:</u><u>-</u></h3>

In rhombus PALM,

  • <u>All </u><u>sides </u><u>and </u><u>opposite </u><u>angles </u><u>are </u><u>equal </u>

Let O be the midpoint of Rhombus PALM

<u>In </u><u>Δ</u><u>OLM</u><u>, </u><u>By </u><u>using </u><u>Angle </u><u>sum </u><u>property </u><u>:</u><u>-</u>

\sf{35° + 90° + }{\sf{\angle{ OLM = 180°}}}

\sf{\angle{OLM = 180° - 125°}}

\sf{\angle{ OLM = 55° }}

<u>Now</u><u>, </u>

\sf{\angle{OLM = }}{\sf{\angle{OLA}}}

  • <u>OL </u><u>is </u><u>the </u><u>bisector </u><u>of </u><u>diagonal </u><u>AM</u>

<u>Therefore</u><u>, </u>

\sf{\angle{ PLA = 55° }}

Thus, Angle PLA is 55° .

Hence, Option C is correct

8 0
3 years ago
Consider two people being randomly selected. (For simplicity, ignore leap years.)
inna [77]

Answer:

(a) = \frac{144}{133225} \\\\(b) = \frac{1}{365}

Step-by-step explanation:

Part (a) the probability that two people have a birthday on the 9th of any month.

Neglecting leap year, there are 365 days in a year.

There are 12 possible 9th in months that make a year calendar.

If two people have birthday on 9th; P(1st person) and P(2nd person).

=\frac{12}{365} X\frac{12}{365}  = \frac{144}{133225}

Part (b) the probability that two people have a birthday on the same day of the same month

P(2 people selected have birthday on the same day of same month) + P(2 people selected not having birthday on  same day of same month) = 1

P(2 people selected not having birthday on  same day of same month):

= \frac{365}{365} X \frac{364}{365} =\frac{364}{365}

P(2 people selected have birthday on the same day of same month) = 1-\frac{364}{365} \\\\= \frac{1}{365}

7 0
3 years ago
Using Heron's Formula, find the Area.<br> Sides are 7 13 8
Amanda [17]

Answer:

10.3

Step-by-step explanation:

hope this helps, if any genius answers as well, give brainliest to them

5 0
3 years ago
Read 2 more answers
Which is a true statement about an isosceles right triangle?
AnnyKZ [126]

Let l be the length of a leg. Using the pythagorean theorem, the hypotenuse is

h = \sqrt{l^2+l^2}=\sqrt{2l^2}=l\sqrt{2}

So, the hypotenuse is \sqrt{2} times as long as either leg.

6 0
3 years ago
Other questions:
  • Find the value of X
    8·1 answer
  • Is this correct? (no actually answering, just tell me if it's right) plz
    11·2 answers
  • What is the exact volume of the cone​
    10·1 answer
  • Graph the function f(x) = x2 + 5x − 6 / x + 1 showing all the key features.
    13·1 answer
  • Anybody up at this time? If so,please help me
    10·1 answer
  • Terry had 400 inches of ribbon before he cut 20 pieces of ribbon that were each 8 inches long. How many 15-inch pieces can Terry
    14·2 answers
  • Suppose f(x) = 2x + 3. Find f(-.5).
    11·1 answer
  • 10. Solve 3(x-1) = 9*​
    8·2 answers
  • What is 200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
    14·1 answer
  • If an investor invests $24,000 into two bonds, one that pays 4% in simple interest, and the other paying 2% simple
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!