1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
14

What is the simplified form of the expression (6^-4)^-9/6^6?​

Mathematics
2 answers:
sertanlavr [38]3 years ago
8 0

Answer:1/6 ^42

Step-by-step explanation:

aleksley [76]3 years ago
6 0

Answer:

(\frac{1}{1296} )^{\frac{729}{64} }

Step-by-step explanation:

I am assuming this problem reads (6^{-4}) ^{-\frac{9}{6}^6 }

  • So let's start on the outside and work our way towards the middle
  • Starting with the (-\frac{9}{6} )^{6}, this can be simplified to \frac{729}{64}

Now we have (6^{-4})^\frac{729}{64}

  • Now simplifying what is inside the parenthesis we get \frac{1}{1296}
  • Combining what we have the simplified for of the problem becomes: (\frac{1}{1296} )^{\frac{729}{64} }
You might be interested in
Write an equation to represent the image. The tape diagram represents an equation. Write an equation to solve 11. 5. b​
azamat

Answer:

fvgdnsigdv356b cdhfn .44. jcbyd6.5.4.3.3.2.2.3.4.5.6.6.7.7

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
In French how would you conjugate verbs with "on"?
mafiozo [28]
You conjugate verbs with the pronoun 'on' the same way you conjugate verbs with pronouns 'il/elle'. "On" means "one", qs in "One can do x or y."
4 0
3 years ago
What is the value of x in the figure below? to 118° A. 28 B. 62 C. 90 D. 118​
My name is Ann [436]

Answer:

D. 118°

Step-by-step explanation:

x = 118° { being corresponding angles }

5 0
2 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
3 years ago
Need help anything helps thanks
yKpoI14uk [10]

A binomial squared is written like

x^2+2ax+a^2

So, we have 2a=6 \iff a=3

So, we want to complete the square (x+3)^2 = x^2+6x+9

We can add and subtract 9 to write

x^2+6x = x^2+6x+(9-9) = (x^2+6x+9)-9 = (x+3)^2-9

5 0
3 years ago
Other questions:
  • What is the sum of (5x−9)+(x−1)
    7·1 answer
  • Estimate.then solve 568-276
    8·2 answers
  • Rewrite the percentage in the sentence below as a decimal.
    13·2 answers
  • 1-6 HELP PLEASE!! I DONT UNDERSTAND!!!
    9·1 answer
  • 5. In 23 years the city of Cincinnati grew from 250 to 3,000. How much of a percentage increase is this?
    7·1 answer
  • Round up to the greater hundred thousand of 949,500
    10·1 answer
  • Reuben bought 4 CDs that were each the same price. Including sales tax, he paid a total of $44.40. Each CD had a tax of $0.60. W
    6·1 answer
  • The distance from Ari’s house, A, to Ben’s house, B, is equal to the distance from Ari’s house to Cal’s house, C. One day the bo
    5·1 answer
  • Find P 20 of the following arithmetic sequence: 206, 212, 218, 224....
    10·1 answer
  • Laura can run 1/4 mile in 82.5 seconds, how long would it take Laura to run 2 and 2/5 miles at that rate
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!