Set up a proportion.
The total side of the “top” line is 8 + 10 = 18. The total side of the “bottom” line is 45. This makes the ratio 18/45.
Now we are trying to find the “larger” bottom segment, let it be x. Because the lines are parallel, the ratio of the “larger” top and bottom segments is equal to the ratio of the whole top and bottom lines.
So 18/45 = 10/x
Reduce 2/5 = 10/x
Cross multiply 2x = 50
Solve x = 25
Answer:
Deal B is better
Step-by-step explanation:
over a year in payment Deal b will be less
<span>A+B)^2 is the largest. It is A^2+2AB+B^2, which is clearly greater than the last two options. To compare (A+B)^2 and 2(A+B), we remove one A+B so that we're just comparing A+B and 2. As A+B must be at least 3 (as both must be positive integers, and one must be greater than the other, leading to a minimum value of A=2, B=1), A+B is greater than 2, and as a result, (A+B)^2 is always the largest.</span>
Answer:
3(4x - 1)(2x + 3)
Step-by-step explanation:
Rearrange the equation into standard form
Subtract 9 - 30x from both sides
24x² + 30x - 9 = 0 ← in standard form
Take out 3 as a common factor
3(8x² + 10x - 3) = 0 ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x term
product = 8 × - 3 = - 24, sum = 10
The factors are - 2 and + 12
Use these factors to replace the x- term, that is
8x² - 2x + 12x - 3 ( factor the first/second and third/fourth terms )
2x(4x - 1) + 3(4x - 1) ← take out the common factor (4x - 1)
(4x - 1)(2x + 3)
24x² + 30x - 9 = 3(4x - 1)(2x + 3) ← in factored form
Answer:
La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.
Step-by-step explanation:
Para calcular el volumen de un prisma rectangular, es necesario multiplicar sus 3 dimensiones: longitud*ancho*altura. El volumen se expresa en unidades cúbicas.
En este caso, se conoce la longitud y el ancho, cuyos valores son 25 y 20 metros. A su vez, se sabe que el depósito de agua debe contener 1000 m³. Entonces, siendo:
Volumen= longitud*ancho*altura
Y reemplazando los valores se obtiene:
1000 m³= 25 m* 20 m* altura
Resolviendo:
1000 m³= 500 m²* altura

altura= 2 m
<u><em>La altura del depósito para que pueda contener 1000 metros cúbicos de agua es 2 m.</em></u>