According to the characteristics of <em>ticket</em> sales and the resulting system of linear equations we find that 122 children bought each one a ticket on Sunday.
<h3>How many children went to the movie theatre?</h3>
In this question we have a <em>word</em> problem, whose information must be translated into <em>algebraic</em> expressions to find a solution. Let be x and y the number of children and adults that went to the movie theatre, respectively.
We need two <em>linear</em> equations, one for the number of people assisting to the theatre and another for the total sales:
x - 4 · y = 0 (1)
6.30 · x + 9.50 · y = 1063.20 (2)
By algebraic procedures the solution to this system is: x = 122.559, y = 30.639. Since the number of tickets sold are integers, then we truncate each result: x = 122, y = 30.
According to the characteristics of <em>ticket</em> sales and the resulting system of linear equations we find that 122 children bought each one a ticket on Sunday.
To learn on systems of linear equations: brainly.com/question/27664510
#SPJ1
13 is the answer ...
draw a picrure ?
please give me an example .
A solution to a system of equations is a set of values for the variable that satisfy all the equations simultaneously. In order to solve a system of equations, one must find all the sets of values of the variables that constitutes solutions of the system.
Multiply 4x12x2x36
I think