1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
15

Ms. Tucker travels through two intersections with traffic lights as she drives to the market. The traffic lights operate indepen

dently. The probability that both lights will be red when she reaches them is 0.22. The probability that the first light will be red and the second light will not be red is 0.33. What is the probability that the second light will be red when she reaches it?
a. 0.40.
b. 0.45.
c. 0.50.
d. 0.55.
e. 0.60
Mathematics
1 answer:
sleet_krkn [62]3 years ago
4 0

Answer:

b. 0.45.

Step-by-step explanation:

The total possible outcome of a probability is 1

Given;

Probability that both lights will be red when she reaches them = 0.22

Probability that the first light will be red and the second light will not be red = 0.33

Probability that the second light will be red when she reaches it = x

These are all the possible outcomes, therefore

0.22 + 0.33 + x = 1

0.55 + x = 1

x = 1 - 0.55

x = 0.45

Option b

You might be interested in
PLEASE HELP!<br><br> Question is on photo! <br> Thank you!!
ipn [44]

We conclude that the relation presented in the picture is a function with domain: - 4 ≤ x < 1 and range: - 4 ≤ x ≤ 5. (Correct choices: B, C, H)

<h3>How to determine the domain and range of a relation and if a relation is a function</h3>

Herein we have a relation between two variables, x and y, relations involve two sets: an input set called domain and an output set called range. A relation is a function if and only if every element of the domain is related to only one element from the range.

Graphically speaking, the horizontal axis corresponds with the domain, whereas the vertical axis is for the set of the range. According to the previous concepts, we conclude that the relation presented in the picture is a function with domain: - 4 ≤ x < 1 and range: - 4 ≤ x ≤ 5. (Correct choices: B, C, H)

To learn more on functions: brainly.com/question/12431044

#SPJ1

7 0
1 year ago
Find the new price of a 10% markup on the original price of $36.00​
Brut [27]
36 x 0.10 = 3.6
36 + 3.6 = $39.60
7 0
3 years ago
4(4x−8)+4(3x−7)=7(2x+5)+6]\<br><br><br> I NEED HELP FAST!!!!
Deffense [45]

The answer you are looking for is 7\frac{101}{14}.



Explanation:

4(4x−8)+4(3x−7)=7(2x+5)+6

Step 1: Simplify both sides of the equation.

4(4x−8)+4(3x−7)=7(2x+5)+6

(4)(4x)+(4)(−8)+(4)(3x)+(4)(−7)=(7)(2x)+(7)(5)+6(Distribute)

16x+−32+12x+−28=14x+35+6

(16x+12x)+(−32+−28)=(14x)+(35+6)(Combine Like Terms)

28x+−60=14x+41

28x−60=14x+41

Step 2: Subtract 14x from both sides.

28x−60−14x=14x+41−14x

14x−60=41

Step 3: Add 60 to both sides.

14x−60+60=41+60

14x=101

Step 4: Divide both sides by 14.

14x

14

=

101

14

x=

101

14


3 0
3 years ago
Read 2 more answers
Cable Strength: A group of engineers developed a new design for a steel cable. They need to estimate the amount of weight the ca
KatRina [158]

Answer:

95% confidence interval for the mean breaking strength of the new steel cable is [763.65 lb , 772.75 lb].

Step-by-step explanation:

We are given that the engineers take a random sample of 45 cables and apply weights to each of them until they break. The mean breaking weight for the 45 cables is 768.2 lb. The standard deviation of the breaking weight for the sample is 15.1 lb.

Since, in the question it is not specified that how much confidence interval has be constructed; so we assume to be constructing of 95% confidence interval.

Firstly, the Pivotal quantity for 95% confidence interval for the population mean is given by;

                            P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean breaking weight = 768.2 lb

            s = sample standard deviation = 15.1 lb

            n = sample of cables = 45

            \mu = population mean breaking strength

Here for constructing 95% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.

<u>So, 95% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-2.02 < t_4_4 < 2.02) = 0.95  {As the critical value of t at 44 degree

                                           of freedom are -2.02 & 2.02 with P = 2.5%}  

P(-2.02 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.02) = 0.95

P( -2.02 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 2.02 \times {\frac{s}{\sqrt{n} } } ) = 0.95

P( \bar X-2.02 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.02 \times {\frac{s}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-2.02 \times {\frac{s}{\sqrt{n} } } , \bar X+2.02 \times {\frac{s}{\sqrt{n} } } ]

                                     = [ 768.2-2.02 \times {\frac{15.1}{\sqrt{45} } } , 768.2+2.02 \times {\frac{15.1}{\sqrt{45} } } ]

                                     = [763.65 lb , 772.75 lb]

Therefore, 95% confidence interval for the mean breaking strength of the new steel cable is [763.65 lb , 772.75 lb].

3 0
3 years ago
Show work <br> only do those <br> 32,34,36,38,40
Free_Kalibri [48]

Answer:  see below

<u>Step-by-step explanation:</u>

32)\quad \dfrac{3}{5}(x-12)>x-24

        3(x - 12) > 5(x - 24)

        3x - 36 > 5x - 120

      <u> -5x       </u>   <u>-5x         </u>

        -2x - 36 >      -120

        <u>      +36</u>      <u>    +36 </u>

        -2x        >       -84

   <u>  ÷ -2        </u> ↓    <u>   ÷ -2  </u>

             x      <       42

Graph:   ←------------o

                             42

34)   6[5y - (3y - 1)] ≥ 4(3y - 7)

        6[5y - 3y + 1] ≥ 4(3y - 7)

        6{2y + 1]        ≥ 4(3y - 7)

         12y + 6        ≥ 12y - 28

        <u>-12y            </u>    <u>-12y       </u>

                  6        ≥         -28

                        TRUE  so the solution is All Real Numbers

Graph:   ←-----------------------→

36)   BC  +  AC      > AB

         4    + 8 - AB > AB

                12 - AB  > AB

       <u>             +AB  </u>  <u>+AB </u>

                12          > 2AB

      <u>         ÷2        </u>    <u>÷2     </u>

                 6           >  AB

                         AB < 6

38)\quad \dfrac{1}{2}(y-16)\geq y+2\quad ;\text{claim}\ y\leq 20

Check: let y = 16

           then \frac{1}{2}(16 - 16) ≥ 16 + 2

                            0    ≥ 18

                            FALSE  so the claim is wrong

40) question not provided in the image so I cannot give a solution.

7 0
3 years ago
Other questions:
  • Patrick is constructing the circumscribed circle for △RST.
    9·2 answers
  • Which equations are true? Choose all answers that apply: Choose all answers that apply: (Choice A) A -x +0+(- x) = 0−x+0+(−x)=0m
    14·1 answer
  • Write in standard notation 6.12 x 10 to the 3rd power
    7·2 answers
  • The graph of y =ex is transformed as shown in the graph below. Which equation represents the transformed function?
    6·1 answer
  • Isabel stacked two wooden blocks as shown. What is the total volume of the stacked blocks?
    5·1 answer
  • Solve: -2/5 (1/4 x -4)
    15·2 answers
  • Yo i need help wit 17 and 18 i’ll give u a brainliest you please
    15·1 answer
  • (From workbook MATH 8A)​
    11·1 answer
  • I need help does anyone know?
    14·1 answer
  • Pls help...also ill mark brainlest
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!