Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is

Answer:
Explanation:
Deceleration of solid disk = g sin10/1 + k²/r² = g sin 10 / 1 + 1/2 = g sin 10 x 2/3
[ k is radius of gyration of disk which is equal to( 1/√2)x r ]
deceleration a = -1.1345 m/s²
v = u - at , t = u / a = 1.5 / 1.1345 = 1.322 s.