Answer:
96 Joules
Explanation:
The formula for work is Fnet times displacement (F x d = w) which, in this case, 48N is the Fnet and 2m as the displacement. Then all we need to do is multiply these two and we get 96 Joules.
Complete Question:
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups,
. What is the difference in maximum stored energy between the sprinters and the nonathlethes?
Answer:

Explanation:
Sprinters' tendons stretch, 
Non athletes' stretch, 
Spring constant for the two groups, k = 31 N/mm = 3100 N/m
Maximum Energy stored in the sprinter, 
Maximum energy stored in the non athletes, 
Difference in maximum stored energy between the sprinters and the non-athlethes:

To be honest I’m not really sure cause I’m in 5th grade but the red planet is the sun
Answer:
B. 1 m/s
Explanation:
Metric unit conversions:
0.3 km = 300m
5 minutes = 5*60 = 300 seconds
So if a seal can reach a depth of 300m in a time of 300 seconds, its diving speed is the distance divided by time duration
v = s/t = 300/300 = 1m/s
So B is the correct answer
Answer:
the answer, the correct one is C
Explanation:
Let's propose the solution of this problem to know which explanation is correct, when the concha stick with the disc is an impulse exercise
I = ΔP
∫ F dt = pf-po
∫ F dt = m v_f - m v₀
Therefore, during the time that the contact lasts, a force is applied to the disk, which causes that if the amount of movement increases and therefore its speed increases, when the constant ceases the forces are reduced to zero and the disk no longer changes its momentum following with constant velocity.
When reviewing the answer, the correct one is C