Frequency = (speed) / (wavelength) = 20 / 0.5 = 40 per second = 40 Hz.
True,According to Isaac Newton believes that Gravity is responsible for drawing attraction which is directly proportional to product of their masses but inversely proportional to the square of the distance between them.
Complete question is;
You are looking at a module specification
sheet that has the table of information
below. What is the maximum power of this
module in Watts to the nearest whole Watt?
Value
Polycrystalline si
Characteristic
Cell Type
Cell
Configuration
Voc
160 in series
137.2 V
V_imp: 29.3 V
Ilsc: 8.60 A
I_Imp: 8.02 A
Dimensions (mm/in): 1000 x 1600 x 50 mm / 39.4" x 63" x 2"
Weight: 10 kg / 22 lbs
Answer:
P ≈ 235 Watts
Explanation:
Formula for power is;
P = IV
Now, for maximum power, we will make use of I_imp and V_imp given
Thus, P = I_imp × V_imp
We are given;
V_imp: 29.3 V
I_Imp: 8.02 A
Thus: P = 8.02 × 29.3 = 234.986 Watts
We are to approximate to the nearest whole watt.
Thus: P ≈ 235 Watts
The question is incomplete. The complete question is :
High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 60 m/s just before it strikes a 50 g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 40 m/s. Find the speed of the golf ball just after impact.
Solution :
We know that momentum = mass x velocity
The momentum of the golf club before impact = 0.200 x 60
= 12 kg m/s
The momentum of the ball before impact is zero. So the total momentum before he impact is 12 kg m/s. Therefore, due to the conservation of momentum of the two bodies after the impact is 12 kg m/s.
Now the momentum of the club after the impact is = 0.2 x 40
= 8 kg m/s
Therefore the momentum of the ball is = 12 - 8
= 4 kg m/s
We know momentum of the ball, p = mass x velocity
4 = 0.050 x velocity
∴ Velocity = 
= 80 m/s
Hence the speed of the golf ball after the impact is 80 m/s.