Answer:
Explanation:
Mg + 2HCl = Mg Cl₂ + H₂
.594 g = .594 / 24.3
= .02444 mole
Heat evolved = msΔ T , m is mass of water ( solvant ) , s is specific heat of water , Δ T is rise in temperature
= 100 x 4.2 x ( 41.83 - 25 )
= 7068.6 J
.02444 mole of Mg evolves 7068.6 J of heat
1 mole of Mg evolves 7068.6 /.02444 J
= 289222.6 J
= 289 kJ .
Molar heat enthalpy = 289 kJ .
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Transition metals usually