the amount of heat produced from the combustion of 24.3 g benzene (c6h6) is ΔH = -976.5 kJ
There are two moles of benzene involved in the process (C6H6). Since the heat of this reaction is -6278 kJ, the burning of 2 moles of benzene will result in a heat loss of 6278 kJ. This reaction is exothermic.
Enthalpy, or the value of H, is a unit of measurement for heat that relies on the amount of matter present (number of moles).
Thus, 24.3 g of benzene contains:
n = mass/molar mass, where n = 24.3/78.11, and n = 0.311 moles.
2 moles = 6278 kJ
0.311 moles =x
By the straightforward direct three rule:
2x = -1953.08 x = -976.5 kJ
Learn more about combustion here-
brainly.com/question/15117038
#SPJ4
Answer:
The correct answer is option A.
Explanation:
Equilibrium is a state when rate of forward reaction is equal to the rate of backward reaction. The concentration of reactants and products becomes constant at this state.
The ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric coefficients is termed as Equilibrium constant. It is denoted by
.
aA + bB
cC
![K_{eq}=\frac{[C]^c}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BC%5D%5Ec%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The answer to this is solved through stochiometry: the answer is this: 0.0833mol