Answer:
balanced equation mole ratio 5 2 mol NO/1 mol O2
10.00 g O2 3 1 mol O2/32.00 g O2 5 0.3125 mol O2
20.00 g NO 3 1 mol NO/30.01 g NO 5 0.6664 mol NO
actual mole ratio 5 0.6664 mol NO/0.3125 mol O2 5 2.132 mol NO/1.000 mol O2
Because the actual mole ratio of NO:O2 is larger than the balanced equation mole
ratio of NO:O2, there is an excess of NO; O2 is the limiting reactant.
Mass of NO used 5 0.3125 mol O2 3 2 mol NO/1 mol O2 5 0.6250 mol NO
0.6250 mol NO 3 30.01 g NO/1 mol NO 5 18.76 g NO
Mass of NO2 produced 5 0.6250 mol NO2 3 46.01 g NO2/1 mol NO2 5 28.76 g NO2
Excess NO 5 20.00 g NO 2 18.76 g NO 5 1.24 g N
Explanation:
From the equation q=mCΔT, set the q of copper = to q of water,
So --- mCΔT(copper)=mCΔT(water).
mass (Cu - copper) = 38g
mass (H2O - water) = 15g
C (H2O) = 4.184 J/g*C
ΔΤ (H2O) = 33-22 = 11*C
ΔΤ (Cu) = 33-80 = -47*C (the final temp is the same for both materials - thermal equilibrium)
C (Cu) = ?
So --- 38(-47)C[Cu]=15(4.184)(11)
--- C[Cu]=690.36/(-1786) = 0.3865 J/g*C, or 0.39 in 2 sig figs. (The negative goes away, because specific heats are usually positive)
<span>To calculate the density of a liquid, you have to first know that density is the amount of substance per unit of volume. In this specific question, density will be found with units of g/mL. Now, the density can be found by dividing the amount of liquid, 75.0g, by the volume, 62.4mL. Doing this we get: 75.0g/62.4mL= 1.2 g/mL as the density of the liquid.</span>