Answer:
<u><em>Volume of NaOH, aka V2 = 6.32 mL to 3 sig. fig.</em></u>
A chemistry student weighs out 0.0941 g of hypochlorous acid (HClo) into a 250. ml. volumetric flask and dilutes to the mark with distilled water. He plans to titrate the acid with 0.2000 M NaOH solution. Calculate the volume of NaOH solution the student will need to add to reach the equivalence point. Round your answer to 3 significant digits mL.
Explanation:
1 mole HClO = 74.44g
0.0941g =
= 0.00126 moles
Concentration = no. of moles/volume in L
Hence, Concentration of HClO = 0.00126/ 0.250L
= 0.005M.
C1V1 =C2V2
0.005 × 250 mL = 0.2 × V2
<u><em>Volume of NaOH, aka V2 = 6.32 mL to 3 sig. fig.</em></u>
I think 1.00 mol sorry if I’m wrong
Answer:
-12.5 kJ/mol
Explanation:
The free-energy predicts if a reaction is spontaneous or not. If it is, ΔG < 0. When a reaction happens by steps, the free-energy of the global reaction can be calculated by the sum of the free-energy of the steps (Hess law). If it's needed to operations at the reaction the same operation must be done in the value of ΔG (if the reaction is inverted, the signal of ΔG must be inverted).
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
ATP → ADP + Pi ∆G'° = –30.5 kJ/mol (x-1)
--------------------------------------------------------------------------------------
Phosphocreatine → creatine + Pi ∆G'° = –43.0 kJ/mol
Pi + ADP → ATP ∆G'° = 30.5 kJ/mol
The bold compounds are in opposite sides, so they'll be canceled in the sum of the reactions:
Phosphocreatine + ADP → creatine + ATP
∆G'° = -43.0 + 30.5
∆G'° = -12.5 kJ/mol
Hey there!
The Buoyant force is going to be equal to the weight of the water displaced and it would be like this 100 L(9.8 N/L) = 980 N.
Hope this helped and mind marking me brainliest. Thank you!