1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
5

In which quadrant does the point (-23 , -10) lie? A. Quadrant II B. Quadrant IV C. Quadrant III D. Quadrant I

Mathematics
1 answer:
oksian1 [2.3K]3 years ago
8 0

Answer:

C.Quadrant III

EXPLANATION:

IN THIRD QUADRANT THAT'S WHERE -NEGATIVE COORDINATES LIE

You might be interested in
Usain Bolt ran the 2012 Olympic 100-meter race in 9.63 seconds. If he runs at this rate on a road with a speed limit of 25 miles
djverab [1.8K]

Answer:

3874.5342

Step-by-step explanation:

9.63 divide by 100 = 0.0963

0.0963x40 234= 3874.5342

6 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Heeeeeeeeeeeeeelp<br>Please help!​
Angelina_Jolie [31]

Answer:x=4

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
How many times do 12 go into 209?
Olenka [21]
209/12 is 17.41, so 12 goes into 209 17 times.
3 0
3 years ago
Which value is a solution of the equation 85= 120-w?
Ronch [10]
85=120-w\\85-120=120-w-120\\-35=-w\\\frac{-35}{-1}=\frac{-w}{-1}\\35=w

w = 35
8 0
3 years ago
Read 2 more answers
Other questions:
  • The following bar chart shows the number of different types of animals at two county fairs. Fair X had a total of 645 animals, a
    7·1 answer
  • What is the other polynomial send help please
    13·1 answer
  • Which of the following should not be capitalized?
    14·2 answers
  • Sid starts with savings of £13
    10·1 answer
  • How can Brady use fraction strips to show that 3÷4 and 7÷8 are not equivalent
    5·1 answer
  • A country's population in 1991 was 147 million.
    15·1 answer
  • A drink is made by mixing pineapple juice, orange juice and lime juice in the ratio 2:7:3. How much pineapple juice is used
    11·1 answer
  • I neeeddd hellppp on this
    6·2 answers
  • a hotel has enough food for 125 guest to last 16 days. how long will the food last if 25 more guest check-in to the hotel ?
    14·1 answer
  • 274% as a decimal and fraction?​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!