Answer:
h(t) = -5*t^2 + 20*t + 2
Step-by-step explanation:
First, we know that the motion equation of the ball will be quadratic, so we write the equation:
h(t) = a*t^2 + b*t + c
Now we need to work with the data in the table.
h(1) = 17
h(3) = 17
h(1) = h(2) = 17
Then we have a symmetry around:
(3 - 1)/2 + 1 = 2
Remember that the symmetry is around the vertex of the parabola, then we can conclude that the vertex of the parabola is the point:
(2, h(2)) = (2, 22)
Remember that for a quadratic equation:
y = a*x^2 + b*x + c
with a vertex (h, k)
we can rewrite our function as:
y = a*(x - h)^2 + k
So in this case, we can rewrite our function as:
h(t) = a*(t - 2)^2 + 22
To find the value of a, notice the first point in the table:
(0, 2)
then we have:
h(0) = 2 = a*(0 - 2)^2 + 22
= 2 = a*(-2)^2 + 22
2 = a*(4) + 22
2 - 22 = a*(4)
-20/4 = -5 = a
Then our function is:
h(t) = -5*(t - 2)^2 + 22
Now we just expand it:
h(t) = -5*(t^2 - 4*t + 4) + 22
h(t) = -5*t^2 + 20*t + 2
The correct option is the first one.
Answer:
x = -84
Step-by-step explanation:
(x/-7) - 2 = 10
To be able to determine the graph of this inequality, we'll start rearranging the inequality putting the "y" variable at the left side of the equation.

Since the inequality here is greater than or equal to, this means that the shade is above the solid line.
This equation also has a slope of -5 and y-intercept of 0.
Therefore, the graph of this equation looks like this:
Missing informations but this can be turned into y=4x-12
Answer:
The measure of <u>Angle G is 41</u>
Step-by-step explanation:
We know that in a parallelogram, opposite angles are congruent, therefore let's solve for x-value first;
3x + 11 = 5x - 9
11 = 5x - 3x - 9
11 = 2x - 9
11 + 9 = 2x
20 = 2x
20/2 = x
10 = x
Now that we have x-value, we can substitute it in the equation for Angle G to find it's angle measure;
5(10) - 9 = ∠G
50 - 9 = ∠G
41 = ∠G
So the final answer = <u>The measure of Angle G is 41</u>
Hope this helps!