Answer:
common ratio: 1.155
rate of growth: 15.5 %
Step-by-step explanation:
The model for exponential growth of population P looks like: 
where
is the population at time "t",
is the initial (starting) population
is the common ratio,
and
is the rate of growth
Therefore, in our case we can replace specific values in this expression (including population after 12 years, and initial population), and solve for the unknown common ratio and its related rate of growth:
![P(t)=P_i(1+r)^t\\13000=2300*(1+r)^{12}\\\frac{13000}{2300} = (1+r)^12\\\frac{130}{23} = (1+r)^{12}\\1+r=\sqrt[12]{\frac{130}{23} } =1.155273\\](https://tex.z-dn.net/?f=P%28t%29%3DP_i%281%2Br%29%5Et%5C%5C13000%3D2300%2A%281%2Br%29%5E%7B12%7D%5C%5C%5Cfrac%7B13000%7D%7B2300%7D%20%3D%20%281%2Br%29%5E12%5C%5C%5Cfrac%7B130%7D%7B23%7D%20%3D%20%281%2Br%29%5E%7B12%7D%5C%5C1%2Br%3D%5Csqrt%5B12%5D%7B%5Cfrac%7B130%7D%7B23%7D%20%7D%20%3D1.155273%5C%5C)
This (1+r) is the common ratio, that we are asked to round to the nearest thousandth, so we use: 1.155
We are also asked to find the rate of increase (r), and to express it in percent form. Therefore we use the last equation shown above to solve for "r" and express tin percent form:

So, this number in percent form (and rounded to the nearest tenth as requested) is: 15.5 %
Answer:
0.5625
Step-by-step explanation:
3/4 as a decimal is 0.75
0.75×0.75=0.5625
Answer:
3. BDE is congruent to BAC; corresponding angles postulate
4. B is congruent to B; reflexive property of equality
Step-by-step explanation:
I took the test.
ans is c it is simple c only meet the need of questions
Answer:
The line of best fit would be the line in between all the points in the scatter plot that is the closest to having an equal amount of dots on each side.
If there isn't one with the exact number, pick the one that is the <em>very closest</em>.