I believe it should be when he arranged the elements by their atomic mass.
It has ns1 electron configuration like the alkali metals.
The volume of chlorine molecules produced at STP would be 96 dm³.
<h3>Stoichiometric problem</h3>
Sodium chloride ionizes during electrolysis to produce sodium and chlorine ions as follows:

This means that 1 mole of sodium chloride will produce 1 mole of sodium ion and 1 mole of chlorine ion respectively.
Recall that: mole = mass/molar mass
Hence, 234 g of sodium chloride will give:
234/58.44 = 4.00 moles.
Thus, the equivalent number of moles of chlorine produced by 234 g of sodium chloride will be 4 moles.
Recall that:
1 mole of every gas at Standard Temperature and Pressure = 24 Liters.
Hence:
4 moles of chlorine = 4 x 24 = 96 Liters or 96 dm³.
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1
<span>We use the formula PV = nRT. P = 758 torr = 0.997 atm. V = 3.50 L. T = 35.6 C = 308.15 K. R = 0.0821. Rearranging the equation gives up n = PV/Rt and we get .0138 moles of butane. Mass of 0.0138 moles of butane = .0138 x 58.12 = 8.02g.</span>
Answer:
D. 
Explanation:
Hello!
In this case, for the given set of chemical reactions, it is possible to infer that D. is a categorized as redox due to the following:
Since both chlorine and bromine remain as diatomic gases, their oxidation states in such a form is 0, but as anions with lithium cations they have a charge of - according to the following reaction and half-reactions:


Unlike the other reactions whereas no change in the oxidation states is evidenced.