I notice that the energy how it’s transferred it goes down slowly and the heat waves slowly rise up when conducting air
Time taken by the body to move through a distance of 12 m is 2 s
Explanation:
using the equation for force

m= mass= 1 kg
F= force= 6 N
a= acceleration=
6= 1 a
a= 6 m/s²
Now using the kinematic equation,

d= distance= 12 m
V= initial velocity=0 as the object is at rest initially
12= 0(t)+ 1/2 (6) t²
t²=4
t= 2 s
A 59 kg sprinter, starting from rest, runs 47 m in 7.0 s at constant acceleration.?
What is the sprinter's power output at 2.0 s, 4.0 s, and 6.0 s?
Instantaneous Power is the force times velocity
P = Fv
Because the acceleration is constant, the force will be constant as well
F = ma
P = mav
for constant acceleration, the velocity at each time is found using
v = at
P = ma(at) = ma²t
find the acceleration using kinematic equation
s = ½at²
a = 2s/t²
a = 2(47) / 7.0²
a = 1.918 m/s²
P(2.0) = 59(1.918²)2.0 = 434.25 W = 0.43 kW
P(4.0) = 59(1.918²)4.0 = 868.51 W = 0.87 kW
P(6.0) = 59(1.918²)6.0 = 1302.76 W = 1.3 kW
I hope this helped.
Answer:
Explanation:
Let x ft be used to make square and 2-x ft be used to make equilateral triangle.
each side of square = x/4
area of square = ( x /4 )²
Each side of triangle
= (2-x) /3
Area of triangle = 1/2 (2-x)²/9 sin 60
= √3 / 36 x (2-x)²
Total area
A = ( x /4 )² +√3 / 36 (2-x)²
For maximum area
dA/dx = 0
1/16( 2x ) -√3 / 36 x2(2-x) = 0
x / 8 - √3(2-x)/ 18 = 0
x / 8 - √3/9 + √3/18 x = 0
x ( 1/8 + √3/18 ) = √3/9
x(.125 +.096 ) = .192
x = .868 ft