Answer:
6.7 m/s^2
Explanation:
The formula of acceleration is:

where
is acceleration,
is velocity and
is time.
means final velocity.
means initial velocity,
means final time and
means initial time.
We are given that the Firebird travels at velocity of 0 to 60 mph in four seconds. Therefore:
- Our initial velocity starts at 0 mph.
- Our final velocity is at 60 mph.
- Our initial time is 0 second.
- Our final time is 4 seconds.
Since it travels to the east then our vector will be positive. However, acceleration has to be in m/s^2 unit (Sl unit) so we'll have to convert from mph (miles per hours) to m/s (meters per second) first.
We know that:
- A mile equals to 1609.344 meters.
- An hour equals to 60 minutes which a minute equals to 60 seconds. So 60 minutes will equal to 3600 seconds.
Now we divide 1609.344 by 3600 to find a unit rate of m/s:

Now multiply 0.44704 m/s by 0 and 60 to get velocity in m/s unit:
- Initial velocity = 0 m/s
- Final velocity = 60 * 0.44704 = 26.82 m/s
Time is already in second so no need for conversion. Substitute known information in the formula:

Therefore, the Firebird will accelerate at the rate of 6.7 m/s^2.
Place the object in an electronic balance and measure its mass.
Place a measured amount of water in the cylinder.
Place the object in the cylinder so that it’s fully submerged.
Measure the new level of the liquid and subtract the original level. This is equal to the volume of the object.
Density = mass / volume.
Answer:

Explanation:
A force exerts work when there is a displacement of its point of application in the direction of that force. Therefore, the work done by a system is defined as the inner product between the applied force and the displacement:

In this case, we have:

So, replacing this:

Please find attached photograph for your answer. Do comment if you have any query.. Please do mark me Brainliest if you like my answer
To solve the problem, use Kepler's 3rd law :
T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
but first covert 6.00 years to seconds :
6.00years = 6.00years(365days/year)(24.0hours/day)(6...
= 1.89 x 10^8s
The radius of the orbit then is :
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.89 x 10^8s)² / 4π²]⅓
= 6.23 x 10^11m