1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
13

Please answer help me

Physics
1 answer:
Andrews [41]3 years ago
7 0
I believe the answer is x
You might be interested in
One of the harmonics on a string 1.30m long has a frequency of 15.60 Hz. The next higher harmonic has a frequency of 23.40 Hz. F
Alja [10]

Answer:

\large \boxed{\text{(a) 7.800 Hz; (b) 20.3 m/s; 40.6 m/s; 60.8 m/s}}

Explanation:

a) Fundamental frequency

A harmonic is an integral multiple of the fundamental frequency.

\dfrac{\text{23.40 Hz}}{\text{15.60 Hz}} = \dfrac{1.500}{1} \approx \dfrac{3}{2}

f = \dfrac{\text{24.30 Hz}}{3} = \textbf{7.800 Hz}

b) Wave speed

(i) Calculate the wavelength

In a  fundamental vibration, the length of the string is half the wavelength.

\begin{array}{rcl}L & = & \dfrac{\lambda}{2}\\\\\text{1.30 m} & = & \dfrac{\lambda}{2}\\\\\lambda & = & \text{2.60 m}\\\end{array}

(b) Calculate the speed s

\begin{array}{rcl}v_{1}& = & f_{1}\lambda\\& = & \text{7.800 s}^{-1} \times \text{2.60 m}\\& = & \textbf{20.3 m/s}\\\end{array}

\begin{array}{rcl}v_{2}& = & f_{2}\lambda\\& = & \text{15.60 s}^{-1} \times \text{2.60 m}\\& = & \textbf{40.6 m/s}\\\end{array}

\begin{array}{rcl}v_{3}& = & f_{3}\lambda\\& = & \text{23.40 s}^{-1} \times \text{2.60 m}\\& = & \textbf{60.8 m/s}\\\end{array}

4 0
3 years ago
(physical science) could someone please help me out with this lab? if i’m being honest i did the lab but i lost all of my work :
djverab [1.8K]

Explanation:

hdhhrhhrhehhshsujwuuwuwuwwh

6 0
2 years ago
A 50.0 kg crate is pulled 375 N of force applied to a rope. The crate slides without friction.
LUCKY_DIMON [66]

Hi there!

We can use the work-energy theorem to solve.

Recall that:

\large\boxed{W = \Delta KE = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2}

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

W = \frac{1}{2}(50)(5.61^2) = 786.8025 J

Now, we can define work:

\large\boxed{W = Fdcos\theta}}

Now, plug in the values:

786.8025 = Fdcos\theta\\\\786.8025 = (375)(3.07)cos\theta

Solve for theta:

cos\theta = .6834\\\theta = cos^{-1}(.6834) = \boxed{46.887^o}

4 0
2 years ago
1. According to paragraph 3 in the text, MOST of the electromagnetic waves from
Fed [463]

Answer:

Most of the EM waves from the sun that reach Earth are infrared waves, visible light, and UV radiation.

Explanation:

I hope this helps! Have a good day!

5 0
3 years ago
Suppose a car is traveling at +20.3 m/s, and the driver sees a traffic light turn red. After 0.207 s has elapsed (the reaction t
olga nikolaevna [1]

Answer:

33.6371 m

Explanation:

t = Time taken

u = Initial velocity = 20.3 m/s

v = Final velocity

s = Displacement

a = Acceleration = -7 m/s²

Distance traveled in the 0.207 seconds

Distance = Speed × Time

⇒Distance = 20.3×0.207 = 4.2021 m

Equation of motion

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{0^2-20.3^2}{2\times -7}\\\Rightarrow s=29.435\ m

Distance traveled by the car while braking is 29.435 m

Total distance measured from the point where the driver first notices the red light is 29.435+4.2021 = 33.6371 m

7 0
3 years ago
Other questions:
  • A divot is created _____.
    11·2 answers
  • You drop a rock off a bridge. When the rock has fallen 4 m, you drop a second rock. As the two rocks continue to fall, what happ
    10·1 answer
  • A 2137 kg car moving east at 12.91 m/s collides with a 3264 kg car moving north. The cars stick together and move as a unit afte
    8·1 answer
  • An uncharged conductor has a hollow cavity inside of it. Within this cavity there is a charge of +10 µC that does not touch the
    7·1 answer
  • A crazy dog runs at a constant speed of 19.85 mi/hr for 6.09 min. How far does the dog travel during this time period?
    10·1 answer
  • Where is the switch located on this diagram?
    10·1 answer
  • State Newton's first law of motion​
    6·2 answers
  • A 5 kg object is moving in a straight-line with an initial speed of v m/s. It takes 13 s for the speed of the object to increase
    8·1 answer
  • The strongest known magnetic field is that of _____.
    10·1 answer
  • A car accelerates uniformly from rest tona speed of 30.0 mi/h in 12.0s. Find the distance the car travels during this time? Find
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!