Answer:
The height of the building is 88.63 m.
Explanation:
Given;
initial component of vertical velocity,
= 12 m/s sin 26° = 5.26 m/s
initial horizontal component of the velocity,
= 12 m/s cos 26° =10.786 m/s
horizontal distance traveled by the rock, x = 40.4 m
time of flight is calculated as;
x =
t
t = x / 
t = 40.4 / 10.786
t = 3.75 s
Determine the final vertical velocity of the ball;

Determine the height of the rock;

Therefore, the height of the building is 88.63 m.
The kinematic equations of motion that apply here are<span>y(t)=votsin(θ)−12gt2</span>and<span>x(t)=votcos(θ)</span>Setting y(t)=0 yields <span>0=votsin(θ)−12gt2</span>. If we solve for t, we obtain, by factoring,<span>t=<span>2vsin(θ)g</span></span>Substitute this into our equation for x(t). This yields<span>x(t)=<span><span>2v2cos(θ)sin(θ)</span>g</span></span><span>This is equal to x=<span><span>v^2sin(2θ)</span>g</span></span>Hence the angles that have identical projectiles are have the same range via substitution in the last equation is C. <span> 60.23°, 29.77° </span>
Answer:
tell ke first ,what will happen in zero gravity?