Answer:
0 is your answereeeeerrrrr
The height need to change by 4 to double the final velocity.
<h3>Final velocity of the object</h3>
The final velocity of an object during a free fall is related to maximum height of fall as given the equation below.
v = √2gh
v² = 2gh
v²/h = 2g
v₁²/h₁ = v₂²/h₂
when v₂ = 2v₁, change in height is calculated as;
h₂ = h₁v₂²/v₁²
h₂ = (h₁ (2v₁)²) / (v₁)²
h₂ = 4h₁v₁² / v₁²
h₂ = 4h₁
Thus, the height need to change by 4 to double the final velocity.
Learn more about final velocity here: brainly.com/question/25905661
#SPJ1
Plants get it from the roots or leaves
animals get it by breathing
1). trajectory
2). person sitting in a chair
3). 490 meters
4). 65 m/s
5). False. The projectile's displacement, velocity, and acceleration have vertical and horizontal components, but the projectile doesn't.
6). False
7). The vertical component of a projectile doesn't change due to gravity, but the vertical components of its displacement, velocity, and acceleration do.
The vertical components do NOT equal the horizontal components.
8). Decreasing if you include the effects of air resistance. Constant if you don't. Gravity has no effect on horizontal velocity.
9). We can't see the simulation. But if the projectile doesn't have jets on it, then as it travels upward, its vertical velocity must decrease, because gravity is trying to not let it get away.
10). We can't see the simulation. But if the projectile is traveling downward, we would call that "falling", and its vertical velocity must increase, because gravity is pulling it downward.
Mass of caboose 1000 kg
mass of caboose plus mass of middle car = 3000 kg
a = 5
F = ma
3000 * 5 = 15.000 N
hope this help