Answer:
a) puck is subjected to both the forces of the hockey sticks in a horizontal direction,
b)the puck does not move since the sum of the forces is zero
c) changing the magnitude or direction of its applied force
Explanation:
a) The puck is subjected to both the forces of the hockey sticks in a horizontal direction, these forces are of equal magnitude and opposite direction since the puck is at rest.
In the direction of the y-axis (perpendicular to the ice) you have the weight of the disk and the normal to this weight that are also in equilibrium.
b) the puck does not move since the sum of the forces is zero, which implies that the forces of the hockey sticks are of equal magnitude and opposite direction.
c) the player has several ways to make the puck move
* slightly changing the angle of the club and therefore the direction of the force, in this case the disc comes out in the direction of this component
* inclined the stick slightly so that the force has a vertical component and the puck jumps in this direction
* Increasing the magnitude of the force so that the puck comes out in the opposite direction to the player
* The worst case, decreasing its force to zero and the disk comes out in its direction by the other force that had the same magnitude.
<span>virtual, upright, and larger than. just took the test
</span>
Value of resistor = (12V) /(1.2 x 10^-3A)=10000ohms=10k ohms
you tend to push off with the foot still on the boat.
Newtons 3rd law of motion hold that every action has an equal and opposite reaction.
So, the amount of force you use on your back foot to push yourself onto the dock, has an equal end opposite amount of force going the other way from your sole of your foot, which pushes the boat the other way.
The same principle applies when you fire a cannon - in the pirate films, you see the body of the cannon forced back as it is fired.
Take it one step further, Henry VIII flagship, “Mary Rose fired all its cannons together one day in a broad side, the opposite force rolled the ship over and sank it.