Answer:
RMS voltage is 113.1370 V
frequency is 780.685 Hz
voltage is −158.66942 V
maximum current is 2.9739 A
Explanation:
Given data
∆V = 160.0 sin(495t) Volts
so Vmax = 160
and angular frequency = 495
time t = 1/106 s
resistor R = 53.8 Ω
to find out
RMS voltage and frequency of the source and voltage and maximum current
solution
we know voltage equation = Vmax sin ωt
here Vmax is 160 as given equation in question
so RMS will be Vmax / √2
RMS voltage = 160/ √2
RMS voltage is 113.1370 V
and frequency = angular frequency / 2π
so frequency = 497 / 2π
frequency is 780.685 Hz
voltage at time (1/106) s
V(t) = 160.0 sin(495/ 108)
voltage = −158.66942 V
so current from ohm law at resistor R 53.8 Ω
maximum current = voltage max / resistor
maximum current = 160 / 53.8
maximum current = 2.9739 A
Answer:
-17.8 V
Explanation:
The induced emf in a coil is given as:

where N = number of loops
dB = change in magnetic field
r = radius of coil
dt = elapsed time
From the question:
N = 50
dB = final magnetic field - initial magnetic field
dB = 0.35 - 0.10 = 0.25 T
r = 3 cm
dt = 2 ms = 0.002 secs
Therefore, the induced emf is:

Note: The negative sign implies that the EMf acts in an opposite direction to the change in magnetic flux.
The force needed to the stop the car is -3.79 N.
Explanation:
The force required to stop the car should have equal magnitude as the force required to move the car but in opposite direction. This is in accordance with the Newton's third law of motion. Since, in the present problem, we know the kinetic energy and velocity of the moving car, we can determine the mass of the car from these two parameters.
So, here v = 30 m/s and k.E. = 3.6 × 10⁵ J, then mass will be

Now, we know that the work done by the brake to stop the car will be equal to the product of force to stop the car with the distance travelled by the car on applying the brake.Here it is said that the car travels 95 m after the brake has been applied. So with the help of work energy theorem,
Work done = Final kinetic energy - Initial kinetic energy
Work done = Force × Displacement
So, Force × Displacement = Final kinetic energy - Initial Kinetic energy.

Thus, the force needed to the stop the car is -3.79 N.
The speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
<h3>
Speed of the satellite</h3>
v = √(GM/r)
where;
- G is universal gravitation constant
- M is mass of Earth
- r is radius of the satellite
v = √(6.67 x 10⁻¹¹ x 5.98 x 10²⁴/3.57 x 6.37x 10³)
v = 1.32 x 10⁵ m/s
Thus, the speed of the satellite in a circular orbit around the Earth is 1.32 x 10⁵ m/s.
Learn more about speed of satellite here: brainly.com/question/22247460
#SPJ1