Answer:
No, it does not.
Explanation:
According to the Law of Gravitation, something going down has more kinetic energy than something going up because it attracts pressure from around it when going down. When it goes up, it has less gravitational force and inertia also stops the ball from rolling upward. Therefore, without the amount of kinetic energy, it will not have the same amount of acceleration.
<span>Scientists can see the effect of black holes on nearby stars.
So, option B is your answer.
Hope this helps!
</span>
Friction, gravity, normal force, drag force, tension force and human force are the forces that occurs on free body.
<h3>What are the forces in a free body diagram?</h3>
There are large number of external forces acting on an object such as friction, gravity, normal force, drag force, tension force and human force due to pushing or pulling. These forces can cause the motion of the free body which is present at rest form or can stop a body which is moving. A free-body diagram is a useful means of describing and analyzing all the forces that act on a body to determine equilibrium.
So we can conclude that friction, gravity, normal force, drag force, tension force and human force are the forces that occurs on free body.
Learn more about force here: brainly.com/question/388851
#SPJ1
Twisted pair cable consists of a pair of insulated wires twisted together, which is adapted in the field of telecommunication for a long time. With the cable twisting together, it helps to reduce noise from outside sources and crosstalk on multi-pair cables. Basically, twisted pair cable can be divided into two types: unshielded twisted-pair (UTP<span>) and shielded twisted-pair (STP). The former serves as the most commonly used one with merely two insulated wires twisted together. Any data communication cables and normal telephone cables belong to this category. However, shielded twisted pair distinguishes itself from UTP in that it consists of a foil jacket which helps to prevent crosstalk and noise from outside source. It is typically used to eliminate inductive and capacitive coupling, so it can be applied between equipment, racks and buildings. There exist following several different types of
</span><span>Coaxial cable acts as a high-frequency transmission cable which contains a single solid-copper core. A coaxial cable has over 80 times the transmission capability of the twisted-pair. It is commonly used to deliver television signals and to connect computers in a network as well, so people may get more familiar with this kind of cable. There are two coaxial cables: 75 Ohm and 50 Ohm.
</span>
omputing and data communications are fast-moving technologies. There comes a new generation of transmission media—fiber optic cable. It refers to the complete assembly of fibers, which contain one or more optical fibers that are used to transmit data. Each of the optical fiber elements is individually coated by plastic layers and contained in a protective tube. Fiber optic cable transmits data as pulses of light go through tiny tubes of glass, the transmission capacity of which is 26,000 times higher than that of twisted-pair cable. When comparing with coaxial cables, fiber optic cables are lighter and reliable for transmitting data. They transmit information using beams of light at light speed rather than pulses of electricity.
Nowadays, two types of fiber optic cables are widely adopted in the field of data transfer—single-mode fiber optic cables and multimode fiber optic cables. A single-mode optical fiber is a fiber that has a small core, and only allows one mode of light to propagate at a time. So it is generally adapted to high speed, long-distance applications. While a multimode optical fiber is a type of optical fiber with a core diameter larger than the wavelength of light transmitted and it is designed to carry multiple light rays, or modes at the same time. It is mostly used for communication over short distances because of its high capacity and reliability, serving as a backbone applications in buildings.
Answer:
<em>The displacement of the object is -8 m</em>
Explanation:
<u>Displacement</u>
The displacement of a moving object can be calculated as the area under (or above) the graph of velocity vs time.
If the area is below the y-axis, then the displacement is negative. Otherwise is positive.
It's important to differentiate displacement from distance. Displacement takes into consideration the direction of the movement. Distance does not and it's always positive.
From the graph provided, we can see the velocity from t=12 s from t=16 s is negative, and the displacement will also be negative.
The displacement is calculated as the area of the triangle with base b=16-12= 4 seconds and height = -4 m/s, thus:

The displacement of the object is -8 m