Heat supplied to the gold will raise the temperature of the gold from 20 degree Celsius to 90 degree Celsius.
Mass of the gold (m) = 0.072 kg
Temperature change (ΔT) = 90 - 20 = 70 degree Celsius
Specific heat capacity of the gold (c) = 136 J/kg C
Heat supplied = m × c × ΔT
Heat supplied = 0.072 × 136 × 70
Heat supplied = 685.44 Joules
Hence, the heat supplied to the gold to raise the temperature from 20 degree Celsius to 90 degree Celsius = 685.44 Joules
I see the word "when..." kind of fading out at the end of the first line.
Whatever comes after it may be important.
If you're just supposed to copy the expression into the box,
then the problem is that you left the 'e' out of it.
I'm guessing that you're supposed to enter whatever the expression becomes
when either N₀ or ' t ' has some special value that's in the first line.
Just taking a wild guess here . . . . .
If it's "Enter the expression ..... , when t=0 ." ,
then the correct answer in the box is N₀ .
But that's just a wild guess. As I pointed out, you cut off
the picture in the middle of the word 'when', and I've got
a hunch that there's something important after it.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
Answer: B, increase the rate at which he turns the crank
Explanation: i got it right
Most of the momentum is transferred to the ball on top. Since the collision in this situation is elastic, momentum is conserved, meaning the momentum of both balls before hitting the floor is equal to the momentum of both balls right after the collision.