The answer is B hope this helps
Answer:
The magnitude of the electric flux is
Explanation:
Given that,
Electric field = 2.35 V/m
Angle = 25.0°
Area
We need to calculate the flux
Using formula of the magnetic flux
Where,
A = area
E = electric field
Put the value into the formula
Hence, The magnitude of the electric flux is
Answer:Geography, Earth Science, Astronomy
Rotation describes the circular motion of an object around its center.
Explanation:
Answer:
The formula comes from Lorentz force law which includes both the electric and magnetic field. If the electric field is zero, the force law for just the magnetic field is <u>F=q(ν×B</u>) . Here, F is force and is a vector because the force acts in a direction. q is the charge of the particle. v is velocity and is a vector because the particle is moving in some direction. B is the magnetic flux density.
We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd. Since the magnitude of B is constant at every line element of the loop (circle) and it dot product with the line element is B dl everywhere, therefore
∮B dl=μ0 I
B ∮dl=μ0 I
B 2πr=μ0 I
B=μ02πr Id=μ0/4π I dl×rr3
Since, r can be written as r=(rcosθ,rsinθ,z) and dl as dl=(dl,0,0) And now, if we take the cross product we would get
dl×r=−z dlj^+rsinθk^
and therefore the magnitude of dB is equal to
dB=μ0/4π I |dl×r|/r3=μ0/4π I z2+r2sin2θ−−−−−−−−−−√dl/r3
Thus, magnetic field is depending on r,θ,z.
Learn more about Force here-
brainly.com/question/2855467
#SPJ4
Answer:
A: The acceleration is 7.7 m/s up the inclined plane.
B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane
Explanation:
Let us work with variables and set
As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.
Part A:
From the free body diagram we see that the total force along the x-axis is:
Now the force of friction is where is the normal force and from the diagram it is
Thus
Therefore,
Substituting the value for we get:
Now acceleration is simply
The negative sign indicates that the acceleration is directed up the incline.
Part B:
Which can be rearranged to solve for t:
Substitute the value of and and we get:
which is our answer.
Notice that in using the formula to calculate time we used the positive value of , because for this formula absolute value is needed.