Answer:
3/2
Step-by-step explanation:
3-9/-8-(-4). -6/-4. turn into positive due to the two negatives and becomes 3/2
<em>Answer: A solution to a system of equations means the point must work in both equations in the system. So, we test the point in both equations. It must be a solution for both to be a solution to the system. Hope this helps.</em>
<em />
<em>I hope it helps if it does can please mark me as Brainliest thank you!</em>
Answer:
On monday,the high temperature in abilene was 75.6 degrees Fahrenheit and the temperature in New york city was 54 degrees Fahrenheit.How many times greater was the high tempareture in Abilene than the high temperature in New York on monday plz show your work
Step-by-step explanation:
Answer:
(g+f)(x)=(2^x+x-3)^(1/2)
Step-by-step explanation:
Given
f(x)= 2^(x/2)
And
g(x)= √(x-3)
We have to find (g+f)(x)
In order to find (g+f)(x), both the functions are added and simplified.
So,
(g+f)(x)= √(x-3)+2^(x/2)
The power x/2 can be written as a product of x*(1/2)
(g+f)(x)= √(x-3)+(2)^(1/2*x)
We also know that square root dissolves into power ½
(g+f)(x)=(x-3)^(1/2)+(2)^(1/2*x)
We can see that power ½ is common in both functions so taking it out
(g+f)(x)=(x-3+2^x)^(1/2)
Arranging the terms
(g+f)(x)=(2^x+x-3)^(1/2) ..
Answer:
![\large\boxed{-\bigg[(x-3)^2+2x\bigg]+1}\\\\\boxed{-x^2+4x-8}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%7D%5C%5C%5C%5C%5Cboxed%7B-x%5E2%2B4x-8%7D)
Step-by-step explanation:

![f(x)=(x-3)^2+2x\\\\g(x)=-x+1\\\\g\ \circ\ f\to\text{put f(x) instead of x in the function g(x)}:\\\\(g\ \circ\ f)(x)=-\bigg[\underbrace{(x-3)^2+2x}_{x}\bigg]+1](https://tex.z-dn.net/?f=f%28x%29%3D%28x-3%29%5E2%2B2x%5C%5C%5C%5Cg%28x%29%3D-x%2B1%5C%5C%5C%5Cg%5C%20%5Ccirc%5C%20f%5Cto%5Ctext%7Bput%20f%28x%29%20instead%20of%20x%20in%20the%20function%20g%28x%29%7D%3A%5C%5C%5C%5C%28g%5C%20%5Ccirc%5C%20f%29%28x%29%3D-%5Cbigg%5B%5Cunderbrace%7B%28x-3%29%5E2%2B2x%7D_%7Bx%7D%5Cbigg%5D%2B1)
-----------------------------------------
![-\bigg[(x-3)^2+2x\bigg]+1=-(x-3)^2-2x+1\\\\\text{use}\ (a-b)^2=a^2-2ab+b^2\\\\=-(x^2-(2)(x)(3)+3^2)-2x+1=-(x^2-6x+9)-2x+1\\\\=-x^2-(-6x)-9-2x+1=-x^2+6x-9-2x+1\\\\\text{combine like terms}\\\\=-x^2+(6x-2x)+(-9+1)=-x^2+4x-8](https://tex.z-dn.net/?f=-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%3D-%28x-3%29%5E2-2x%2B1%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5C%5C%5C%5C%3D-%28x%5E2-%282%29%28x%29%283%29%2B3%5E2%29-2x%2B1%3D-%28x%5E2-6x%2B9%29-2x%2B1%5C%5C%5C%5C%3D-x%5E2-%28-6x%29-9-2x%2B1%3D-x%5E2%2B6x-9-2x%2B1%5C%5C%5C%5C%5Ctext%7Bcombine%20like%20terms%7D%5C%5C%5C%5C%3D-x%5E2%2B%286x-2x%29%2B%28-9%2B1%29%3D-x%5E2%2B4x-8)
-----------------------------------

