Answer:
1) £2 = €2.32
£5 = €5.80
£50 = €58
2) The graph will be a straight line
3) (0, 0)
4) Label the independent variable, £ on the x-axis and dependent variable € on the y-axis
Step-by-step explanation:
1) The given conversion factors is £1 = €1.16
Therefore;
£2 = 2 × €1.16 = €2.32
£2 = €2.32
£5 = 5 × €1.16 = €5.80
£5 = €5.80
£50 = 50 × €1.16 = €58
£50 = €58
2) The shape of the plot of the directly proportional currencies graph will be a straight line
3) Given that the £ is directly proportional to the € and that the value of the € can be found directly by multiplying the amount in £ by 1.16, without the addition of a constant, the graph crosses the axes at the origin (0, 0)
4) The y-axes which is the dependent variable should be labelled €, while the x-axis which is the independent variable should be labelled £
I found my notes for this exact paper and I have that first problem written. hopefully this helps
The general equation for a circle,

, falls out of the Pythagorean Theorem, which states that the square of the hypotenuse of a right triangle is always equal to the sum of the squares of its legs (you might have seen this fact written like

, where <em>a </em>and <em>b</em> are the legs of a right triangle and <em>c </em>is its hypotenuse. When we fix <em /><em>c</em> in place and let <em>a </em>and <em>b </em>vary (in a sense, at least; their values are still dependent on <em>c</em>), the shape swept out by all of those possible triangles is a circle - a shape defined by having all of its points equidistant from some center.
How do we modify this equation to shift the circle and change its radius, then? Well, if we want to change the radius, we simply have to change the hypotenuse of the triangle that's sweeping out the circle in the first place. The default for a circle is 1, but we're looking for a radius of 6, so our equation, in line with Pythagorus's, would look like

, or

.
Shifting the center of the circle is a bit of a longer story, but - at first counterintuitively - you can move a circle's center to the point (a,b) by altering the x and y portions of the equation to read:
Answer:
y = 2x + 3 → Gradient / slope = 2 → Y - intercept = 3
y = -3x + 3 → Gradient / slope = -3 → Y - intercept = 3
Step-by-step explanation:
y = mx + c
This is the standard way an equation of a line is written. The 'm' of the line is the slope/gradient and the 'c' is the y - intercept. You can find the x-intercept by making y = 0. When the questions asks you to find the gradient you should never put 'x' after it only the number so
y = 2x + 3
Gradient / slope = 2
Y - intercept = 3
y = -3x + 3
Gradient / slope = -3
Y - intercept = 3