Answer:
Archaea
Explanation:
Archaea are prokaryotic single cell microorganism.
They are usually found in extreme environment like hot thermal vent and others. They share characteristics with bacteria and eukaryote. Archaea as a prokaryotic organism they lack true nucleus and organelles but unlike bacteria they are unaffected by antibiotics and contain different cell wall components. Unlike bacteria and eukaryotes, their membranes contain branching lipids.
Answer: Finding the [H3O+] and pH of Strong and Weak Acid Solutions The larger the Ka, the stronger the acid and the higher the H+ concentration at equilibrium. hydronium ion, H3O+, 1.0, 0.00, H2O, 1.0×10−14, 14.00.
Explanation:The hydrogen ion in aqueous solution is no more than a proton, a bare ... the interaction between H+ and H2O .
Answer:
The answer to your question is given after the questions so I just explain how to get it.
Explanation:
a)
Get the molecular weight of Phosphoric acid
H₃PO₄ = (3 x 1) + (31 x 1) + (16 x 4)
= 3 + 31 + 64
= 98 g
98 g ----------------- 1 mol
0.045 g --------------- x
x = (0.045 x 1) / 98
x = 0.045 / 98
x = 0.00046 moles or 4.6 x 10 ⁻⁴
b)
Molarity = 
Molarity = 
Molarity = 0.0013 or 1.31 x 10⁻³
c)
Formula C₁V₁ = C₂V₂
V₁ = C₂V₂ / C₁
Substitution
V₁ = (0.0013)(1) / 0.01
Simplification and result
V₁ = 0.0013 / 0.1
V₁ = 0.13 l = 130 ml
A. the wax is a both; 1. physical change-solid to liquid.
2. chemical change- burned to CO2 + H20 + heat + carbon as seen as black on the rod
b. the wick is neither; the wick does not change, just provides conduit for wax to flame
c. the glass rod is physical change; the carbon is only deported
HOPE THIS HELPS, IVE ALSO LEARNING BEEN LEARNING THIS RECENTLY
The Law of Conservation of Mass states that the mass of reactants entering a reaction must be equal to the mass of the products exiting it. In this case, we only have 2 reactants, Fe and S, and we only have 1 product, FeS. Therefore we expect the total mass of the Fe and S reactants to equal the mass of FeS. This gives us 112 g + 64 g = 176 g of FeS, which is choice D.