Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)
Based on the standards of units conversion, to convert from micrometer to meter, we multiply by 10^-6.
Since we there is a square (10^2) to consider, then to convert from micrometer squared to meter squared, we will multiply by (10^-6)^2 as follows:
1.5 <span>μm2 = 1.5 x (10^-6)^2 = 1.5 x 10^-12 meter sqaures</span>
Larger cells have smaller surface area to volume ratios
<span>Platinum is solid at room temperature. SInce the catalyst is solid while the medium involves gases, this catalyst is characterized as heterogenous. Because they are different states of matter, they can be easily separated through physical means. So, the answer is B.</span>
Answer:
%KCl = 7.05%
%Water = 92.95%
Explanation:
Step 1: Given data
- Mass of KCl (solute): 36 g
- Mass of water (solvent): 475 g
Step 2: Calculate the mass of the solution
The mass of the solution is equal to the sum of the masses of the solute and the solvent.
m = 36 g + 475 g = 511 g
Step 3: Calculate the mass percentage of the solution
We will use the following expression.
%Component = mComponent/mSolution × 100%
%KCl = 36 g/511 g × 100% = 7.05%
%Water = 475 g/511 g × 100% = 92.95%