Answer:
I = 11.26 mA
Explanation:
given,
V = 0.7 V length = 80 m
diameter = 0.2 mm = 0.02 cm
radius = 0.01 × 10⁻² m

ρ for gold wire = 2.44 × 10⁻⁸ ohm-m at 20 °C
A = cross sectional area = π r² = π (0.01 × 10⁻² )²
= 31.4× 10⁻⁹ m²

R = 62.165 Ω


I = 11.26 mA
Answer:
height from where rock was thrown is 27.916 m
Explanation:
speed = 7.50 m/s
θ = 30°
g= 9.8 m/s²
horizontal distance = 18 m
time require for vertical displacement

t = 2.8 sec
now for calculation of height
s = ut + 0.5 a t²
-h = v sinθ× t + 0.5 ×(-9.8)× (2.8²)
-h = 7.5 sin30°× 2.8 - 0.5 ×(9.8)× (2.8²)
-h = -27.916 m
h= 27.916 m
height from where rock was thrown is 27.916 m
-- Electrons are leptons. There are <em>three</em> electrons in each neutral Lithium atom.
The last two parts of the question are absurd.
-- Bonbons are candy, not atomic particles. A bonbon cannot fit into a Lithium atom.
-- A pentagon is a closed geometric figure that has five sides. Although you could, in principle, have a pentagon small enough to fit into a Lithium atom, you could never find a piece of paper small enough to draw it on.
Answer:
Least to most elongated: tungsten, copper, aluminum, nylon.
Explanation:
Materials with high Young's modulus are difficult to stretch. σ = Yε and ε = ΔL/L so an object with a high Young's modulus (Y) subject to a certain tensile stress (σ) will have a smaller strain than an object with a smaller Young's 's modulus subject to the same tensile stress. If strain (ε) is smaller, then ΔL will also be smaller.