Answer:
c.
Explanation:
Initial velocity of cheetah,u=1 m/s
Time taken by cheetah =4.8 s
Final velocity of cheetah,v=28 m/s
We have to find the acceleration of this cheetah.
We know that
Acceleration,
Where v=Final velocity of object
u=Initial velocity of object
t=Time taken by object
Using the formula
Then, we get
Acceleration, a=
Acceleration=
Hence, the acceleration of cheetah=

Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J
The JWST is postioned about 1.5 million kilometers from the earth on the side facing away from the sun
The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω