Assume the parabola is placed on a graph where the x-axis is the top of the dish.
The vertex is then at (0,-30) The x-intercepts or zeros are at (-30,0) and (30,0)
The equation of such parabola would be:

Plug in vertex to find value of 'a'

Now find the focus given that


Answer: the microphone should be placed 7.5 inches from vertex.
4- 7x = 23- 5
4 - 7x = 18
-4 = -4
-7x = 14
/-7 = /-7
X = -2
3x = -6
To get the perimeter of the trapezoid, we will add the lengths of the 4 sides together.
So, first we will need to get the length of each side.
Base of trapezoid = 8 - 2 = 4 unitsThe upper edge of the trapezoid = 6 - 4 = 2 unitsNow, for the two side edges, we can note that
they are both equal. So, we need to get only one length (as the other would be the same). I will get the length of the left side.
Coordinates of the start point are (2,4) which represent (x1,y1)
Coordinates of the end point are (4,9) which represent (x2,y2)
To get the distance between the two points, we will use the rule attached in the image below as follows:
distance = sqrt ((4-2)^2+(9-4)^2)
distance = √29
Therefore, each of the side edges equal √29 unitsFrom the above, we can now easily get the perimeter as follows:perimeter = 6 + 2 + √29 + √29
perimeter = 8 + 2√29 units
Based on the above calculations, the best choice would be:D. 8 + 2√29 units
Answer:
(1, 0)
Step-by-step explanation:
Please write this as y^2 = 4x; the " ^ " indicates exponentiation.
The appropriate equation for a horizontal parabola that opens to the right is
y^2 = 4px
Here, we are told that y^2 = 4x; this tells us that 4p = 4, and so p = 1.
Again, this parabola is a horizontal one and it opens to the right. p = 1 is the distance of the focus from the vertex, and in this case p = 1. Thus, the focus is at (1, 0) (situated on the x-axis).