Answer:
F_net = 26.512 N
Explanation:
Given:
Q_a = 3.06 * 10^(-4 ) C
Q_b = -5.7 * 10^(-4 ) C
Q_c = 1.08 * 10^(-4 ) C
R_ac = 3 m
R_bc = sqrt (3^2 + 4^2) = 5m
k = 8.99 * 10^9
Coulomb's Law:
F_i = k * Q_i * Q_j / R_ij^2
Compute F_ac and F_bc :
F_ac = k * Q_a * Q_c / R^2_ac
F_ac = 8.99 * 10^9* ( 3.06 * 10^(-4 ))* (1.08 * 10^(-4 )) / 3^2
F_ac = 33.01128 N
F_bc = k * Q_b * Q_c / R^2_bc
F_bc = 8.99 * 10^9* ( 5.7 * 10^(-4 ))* (1.08 * 10^(-4 )) / 5^2
F_bc = - 22.137 N
Angle a is subtended between F_bc and y axis @ C
cos(a) = 3 / 5
sin (a) = 4 / 5
Compute F_net:
F_net = sqrt (F_x ^2 + F_y ^2)
F_x = sum of forces in x direction:
F_x = F_bc*sin(a) = 22.137*(4/5) = 17.71 N
F_y = sum of forces in y direction:
F_y = - F_bc*cos(a) + F_ac = - 22.137*(3/5) + 33.01128 = 19.72908 N
F_net = sqrt (17.71 ^2 + 19.72908 ^2) = 26.5119 N
Answer: F_net = 26.512 N
Extinction of a species is most likely to occur as a result of "<span>environmental changes"
In short, Your Answer would be Option D
Hope this helps!</span>
Physics is a very important part of Architecture. It helps you to understand how forces work on things that you build, so that they don't collapse. So yes, you do.
58 the number of protons are the same as your atomic number<span />
Grav. Potential at surface of the asteroid:
V = - G.Ma./ R
V = (-) 6.67^-11 x 4.0^20kg / 5.7^5m .. .. V = (-) 4.681 *10 ^5 J/kg
The GPE of the package on the asteroid = 9.0kg x (-) 4.681*10^5J/kg = (-) 4.21 ^5
J
This is the amount of energy required to come back the
package to infinity.
The total energy that needs to be transported to the package:
GPE + KE(for 187m/s)
Total energy required E = 4.21*10^5 + (½x 9.0kg x 168²) = 5.48 * 10^5 J
When the required energy is to be complete by releasing a compressed spring,
Elastic PE stored in spring = ½.ke² = 5.48 * 10^5 J where e = compression
distance
e = √ (2 x 5.48*10^5 / 2.1*10^5)
e = 2.28 m