When a radioactive material is required to be placed in the body, the applications are brachytherapy and radioisotope imaging.
Radioactive materials are elements which has the ability to disintegrate by emitting radioactive substance or radiation. A good example of this is Cobalt-60, Titanium-99 etc.
Brachytherapy is a therapeutic process in which radioactive material is inserted into the body in close proximity to the region affected. The radioactive material emits radiations which are required to control the unwanted biological material in the body. A good application of this is the treatment of cancer using Cobalt-60.
Radioisotope imaging is a diagnostic process which is an imaging technique that may require placing a radioactive material in the body so as to trace or locate the affected part of the body. In this case, the material is used as a tracing element.
The applications that require the placing of radioactive materials in the body are brachytherapy and radioisotope imaging.
For more explanation, visit: brainly.com/question/9790340
 
        
                    
             
        
        
        
Answer:
The  correct option is  H
Explanation:
From the question we are told that 
     The index of refraction of  coating is   
 
        The  index of refraction of material  is  
    
Generally the condition for constructive for a thin film interference is mathematically represented 
             ![2 *  t  = [ m  + \frac{1}{2}] \frac{\lambda}{n_1 }](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5B%20m%20%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5D%20%5Cfrac%7B%5Clambda%7D%7Bn_1%20%7D)
Here  t represents the thickness 
For minimum thickness  m =  0
 So 
            
=>        
 
        
             
        
        
        
Sodium, magnesium, and aluminum! 
        
                    
             
        
        
        
In 1912, Bohr<span> was working for the Nobel laureate J.J. Thompson in England when he was introduced to Ernest Rutherford, whose </span>discovery<span> of the nucleus and development of an atomic model had earned him a Nobel Prize in chemistry in 1908. Under Rutherford's tutelage, </span>Bohr<span> began studying the properties of atoms.
</span>
        
                    
             
        
        
        
Answer:
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.