g Generally the accepted value of acceleration due to gravity is 9.801 
as per the question the acceleration due to gravity is found to be 9.42
in an experiment performed.
the difference between the ideal and observed value is 0.381.
hence the error is -
=3.88735 percent
the error is not so high,so it can be accepted.
now we have to know why this occurs-the equation of time period of the simple pendulum is give as-![T=2\pi\sqrt[2]{l/g}](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%5B2%5D%7Bl%2Fg%7D)

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.
if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801 
Answer:
A slow down and stop
Explanation:
When there is no force acting on something it automatically begins to slow down and then stops.Essentially, Aristotle's perspective of motion is that "it requires a force to move an object in an unnatural" way— or, plainly, that "movement involves strength." Indeed, if you propel a book, it keeps moving. Once you stop trying to push, it comes to a stop.
Answer:
2,25 g/cm3
Explanation:
Hi, you have to know one thing for this.. Density = mass/Volume,
When you have the loaf of bread with 3100 cm3 and a density of 0.90 g/cm3, the mass of that bread is 2790 g because of if you isolate the variable mass from the equation you get.. mass= density x volume
Later, have on account the mass never changes, so you crush the bread and the mass is the same.. so when you have the mashed bread.. you know that the mass is 2790 g and the volume of the bag is 1240 cm3, so you apply the main equation.... density=2790 g / 1240 cm3 , so density = 2,25 g/cm3
That's unaccelerated motion,
and constant velocity.
Melting freezing and boiling are molecular changes