I believe this is it
The centripetal force is given by
F = mv^2 / r
When v' = v/2,
F' = mv'^2/r = m(v/2)^2/r = mv^2/4r = F/4.
So the centripetal force is divided by 4.
Answer:
0.021 V
Explanation:
The average induced emf (E) can be calculated usgin the Faraday's Law:
<u>Where:</u>
<em>N = is the number of turns = 1 </em>
<em>ΔΦ = ΔB*A </em>
<em>Δt = is the time = 0.3 s </em>
<em>A = is the loop of wire area = πr² = πd²/4 </em>
<em>ΔB: is the magnetic field = (0 - 1.04) T </em>
Hence the average induced emf is:
Therefore, the average induced emf is 0.021 V.
I hope it helps you!
In a block and tackle, some friction in the pulleys will reduce the mechanical advantage of the machine. To include friction in a calculation of the mechanical advantage of a block and tackle, divide the weight of the object being lifted by the weight necessary to lift it.
Hope this helps
Answer:
W=1055N
Explanation:
In order to solve this problem, we must first do a drawing of the situation so we can visualize theh problem better. (See attached picture)
In this problem, we will ignore the board's weight. As we can see in the free body diagram of the board, there are only three forces acting on the system and we can say the system is in vertical equilibrium, so from this we can say that:

so we can do the sum now:

when solving for the Weight W, we get:

and now we can substitute the given data, so we get:
W=410N+645N
W=1055N
Answer:
magnetic fields is stronger at the pulls because opposites attract which is why the pull is stronger.
this was written by me.
Explanation: