Answer:
a = - 3.75 m/s²
negative sign indicates deceleration here.
Explanation:
In order to find the constant deceleration of the car, as it stops, we will use the 3rd equation of motion. The 3rd equation of motion is as follows:
2as = Vf² - Vi²
a = (Vf² - Vi²)/2s
where,
a = deceleration of the car = ?
Vf = Final Velocity = 0 m/s (Since, the car finally stops)
Vi = Initial Velocity = 30 m/s
s = distance covered by the car = 120 m
Therefore,
a = [(0 m/s)² - (30 m/s)²]/(2)(120 m)
<u>a = - 3.75 m/s²</u>
<u>negative sign indicates deceleration here.</u>
Answer:

Explanation:
The final angle speed of the merry-go-round is determined with the help of the Principle of Angular Momentum Conservation:
![(270\,kg\cdot m^{2})\cdot \left(8\,rpm\right) = [270\,kg\cdot m^{2}+(27\,kg)\cdot (1.80\,m)^{2}]\cdot \dot n](https://tex.z-dn.net/?f=%28270%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%29%5Ccdot%20%5Cleft%288%5C%2Crpm%5Cright%29%20%3D%20%5B270%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%2B%2827%5C%2Ckg%29%5Ccdot%20%281.80%5C%2Cm%29%5E%7B2%7D%5D%5Ccdot%20%5Cdot%20n)

Answer:
the bigger the mass, the smaller the acceleration and the smaller speed
Explanation:
this can be proven from the formula F = ma
F = m×speed/time
Or a practical example is that of a heavy object and a light object if pushed with the same force, it'll be observed that the small object moves faster or with a greater speed than the heavy object